ГОСТ Р 51318.16.1.4-2008
(СИСПР 16-1-4:2007)
Группа Э02
НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ
Совместимость технических средств электромагнитная
ТРЕБОВАНИЯ К АППАРАТУРЕ ДЛЯ ИЗМЕРЕНИЯ ПАРАМЕТРОВ ИНДУСТРИАЛЬНЫХ РАДИОПОМЕХ И ПОМЕХОУСТОЙЧИВОСТИ И МЕТОДЫ ИЗМЕРЕНИЙ
Часть 1-4
АППАРАТУРА ДЛЯ ИЗМЕРЕНИЯ ПАРАМЕТРОВ ИНДУСТРИАЛЬНЫХ РАДИОПОМЕХ И ПОМЕХОУСТОЙЧИВОСТИ. УСТРОЙСТВА ДЛЯ ИЗМЕРЕНИЯ ИЗЛУЧАЕМЫХ РАДИОПОМЕХ И ИСПЫТАНИЙ НА УСТОЙЧИВОСТЬ К ИЗЛУЧАЕМЫМ РАДИОПОМЕХАМ
Electromagnetic compatibility of technical equipment. Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-4. Radio disturbance and immunity measuring apparatus. Radiated radio disturbance measuring and immunity test apparatus
ОКС 33.100
Дата введения 2009-07-01
Предисловие
Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. N 184-ФЗ "О техническом регулировании", а правила применения национальных стандартов Российской Федерации - ГОСТ Р 1.0-2004 "Стандартизация в Российской Федерации. Основные положения"
Сведения о стандарте
1 РАЗРАБОТАН ФГУП "Ленинградский отраслевой научно-исследовательский институт радио" (ЛОНИИР) и Техническим комитетом по стандартизации ТК 30 "Электромагнитная совместимость технических средств" на основе собственного аутентичного перевода стандарта, указанного в пункте 4
2 ВНЕСЕН Техническим комитетом по стандартизации ТК 30 "Электромагнитная совместимость технических средств"
3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 25 декабря 2008 г. N 707-ст
4 Настоящий стандарт является модифицированным по отношению к международному стандарту СИСПР 16-1-4:2007 "Требования к аппаратуре для измерения радиопомех и помехоустойчивости и методы измерений. Часть 1-4. Аппаратура для измерения радиопомех и помехоустойчивости. Вспомогательное оборудование. Излучаемые радиопомехи" (CISPR 16-1-4:2007 "Specification for radio disturbance and immunity measuring apparatus and methods - Part 1-4: Radio disturbance and immunity measuring apparatus - Ancillary equipment - Radiated disturbances"). При этом дополнительные положения и требования, включенные в текст стандарта для учета потребностей национальной экономики Российской Федерации и особенностей российской национальной стандартизации, выделены в тексте курсивом.
Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для приведения в соответствие с ГОСТ Р 1.5-2004 (подраздел 3.5).
При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты Российской Федерации, сведения о которых приведены в дополнительном приложении G
5 ВВЕДЕН ВПЕРВЫЕ
Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячно издаваемых информационных указателях "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе "Национальные стандарты". Соответствующая информация, уведомления и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет
Предисловие к СИСПР 16-1-4:2007
Международный стандарт СИСПР 16-1-4:2007 подготовлен Международным специальным комитетом по радиопомехам (СИСПР) Международной электротехнической комиссии (МЭК), подкомитетом А "Измерения радиопомех и статистические методы".
Настоящее второе издание международного стандарта СИСПР 16-1-4:2007 отменяет и заменяет первое издание, опубликованное в 2003 г., Изменение 1 (2004 г.) и Изменение 2 (2005 г.).
1 Область применения
Настоящий стандарт является основополагающим стандартом, устанавливающим характеристики и качество функционирования устройств для измерения излучаемых индустриальных радиопомех (ИРП) и испытаний на устойчивость к излучаемым радиопомехам в полосе частот от 9 кГц до 18 ГГц.
Настоящий стандарт устанавливает технические требования к измерительным площадкам, измерительным антеннам, ТЕМ-камерам и реверберационным камерам.
Требования настоящего стандарта должны выполняться на всех частотах и для всех уровней излучаемых радиопомех в пределах диапазонов измерений СИСПР, установленных для измерительных устройств.
_______________
Информация о неопределенностях измерений, статистике и моделировании норм ИРП приведена в ГОСТ Р 51318.16.4.2 и [3].
2 Нормативные ссылки
В настоящем стандарте использованы нормативные ссылки на следующие стандарты:
ГОСТ Р ИСО 9000-2008 Системы менеджмента качества. Основные положения и словарь
ГОСТ Р 51318.16.1.1-2007 (СИСПР 16-1-1:2006) Совместимость технических средств электромагнитная. Требования к аппаратуре для измерения параметров индустриальных радиопомех и помехоустойчивости и методы измерений. Часть 1-1. Аппаратура для измерения параметров индустриальных радиопомех и помехоустойчивости. Приборы для измерения индустриальных радиопомех
ГОСТ Р 51318.16.4.2-2006 (СИСПР 16-4-2:2003) Совместимость технических средств электромагнитная. Неопределенность измерений в области электромагнитной совместимости
ГОСТ Р 51320-99 Совместимость технических средств электромагнитная. Радиопомехи индустриальные. Методы испытаний технических средств - источников индустриальных радиопомех
ГОСТ 30372-95/ГОСТ Р 50397-92 Совместимость технических средств электромагнитная. Термины и определения
Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.
3 Термины и определения
В настоящем стандарте применены термины по ГОСТ 30372-95 [4], а также следующие термины с соответствующими определениями:
3.2 диапазон измерений СИСПР (CISPR indicating range): Диапазон измерений, установленный производителем, определяющий максимальное и минимальное показания прибора, в пределах которых измерительный приемник отвечает требованиям настоящего стандарта.
3.3 измерительная площадка для определения градуировочных коэффициентов антенн (calibration test site): Открытая измерительная площадка с металлической пластиной заземления, имеющая строго определенную характеристику затухания при горизонтальной и вертикальной поляризациях электромагнитного поля.
Результаты измерения затухания данной измерительной площадки сравнивают с результатами измерения затухания измерительной площадки для испытаний технических средств (ТС) на соответствие нормам ИРП для того, чтобы оценить качество функционирования измерительной площадки для испытаний ТС на соответствие нормам.
3.4 измерительная площадка для испытаний ТС на соответствие нормам ИРП (compliance test site): Измерительная площадка, отвечающая условиям, при которых обеспечивается правильность и повторяемость результатов измерений напряженности поля ИРП от испытуемого ТС для сравнения их с соответствующей установленной нормой.
3.5 антенна (antenna): Часть передающей или приемной системы, предназначенная для излучения или приема электромагнитных волн.
Примечания
1 В контексте требований настоящего стандарта симметрирующее устройство является частью антенны.
2 См. также 3.7.
3.6 симметрирующее устройство (balun): Пассивная электрическая схема для перехода от симметричной линии передачи (или симметричного устройства) к несимметричной и наоборот.
3.7 резонансный диполь свободного пространства (free-space resonant dipole): Проволочная антенна, состоящая из двух прямых соосных проводников одинаковой длины, расположенных концами друг к другу и разделенных небольшим зазором. При этом длина каждого проводника приблизительно равна четверти длины волны, так что на этой частоте входное полное сопротивление проволочной антенны, измеренное на зазоре, будет активным, что соответствует характеристикам диполя, расположенного в свободном пространстве.
Примечания
1 В контексте требований настоящего стандарта данная проволочная антенна, подсоединенная к симметрирующему устройству, также называется "измерительной антенной".
2 Данная проволочная антенна также называется "настроенным симметричным вибратором".
3.8 затухание площадки (site attenuation): Затухание между двумя определенными точками на измерительной площадке, определяемое в результате двух измерений как значение вносимых потерь, когда непосредственное электрическое соединение между выходом генератора и входом измерителя ИРП заменяется подключением передающей антенны к выходу генератора и приемной антенны - ко входу измерителя ИРП.
3.9 измерительная антенна (антенна для проведения измерений) (test antenna): Комбинация резонансного диполя свободного пространства и соответствующего симметрирующего устройства.
Примечание - Данное определение термина - только для использования в настоящем стандарте.
3.10 проволочная антенна (wire antenna): Определенная конструкция, состоящая из одной или более металлических проволок или штырей для излучения или приема электромагнитных волн.
Примечание - Проволочная антенна не имеет симметрирующего устройства.
3.11 полностью безэховая камера (fully anechoic room): Экранированное помещение, внутренние поверхности которого полностью покрыты высокочастотным материалом (ВЧ поглотителем), поглощающим электромагнитную энергию в рабочей полосе частот.
3.12 измерительная площадка квазисвободного пространства (quasi-free space test site): Измерительная площадка, затухание которой на любой частоте рабочего диапазона, измеренное с помощью настроенных симметричных вибраторов с вертикальной поляризацией, отличается не более чем на ±1 дБ от расчетного значения затухания в свободном пространстве.
3.13 рабочий объем (test volume): Объем в полностью безэховой камере, в котором размещается испытуемое ТС.
Примечание - В данном объеме выполняются требования к измерительной площадке квазисвободного пространства. Поверхности, ограничивающие данный объем, обычно находятся на расстоянии 0,5 м или более от поглощающего материала полностью безэховой камеры.
3.14 измеритель напряженности поля: Измерительный комплект, состоящий из измерителя ИРП, калиброванной измерительной антенны и ВЧ кабеля.
3.15
|
валидация: Подтверждение на основе представления объективных свидетельств того, что требования, предназначенные для конкретного предлагаемого использования или применения, выполнены.
[ГОСТ Р ИСО 9000-2008, пункт 3.8.5] |
4 Антенны для измерения излучаемых ИРП
Антенна и схема ее подключения к измерителю ИРП не должны существенным образом влиять на общие характеристики измерителя ИРП. Если антенна подсоединяется к измерителю ИРП, измерительная система должна соответствовать требованиям по ширине полосы, установленным в ГОСТ Р 51318.16.1.1 для соответствующей полосы частот.
Антенна должна иметь линейную поляризацию. Она должна быть ориентирована так, чтобы можно было провести измерения при соответствующей поляризации поля. Может потребоваться регулировка высоты центра антенны над землей в соответствии с применяемым методом испытаний.
Примечание - Дополнительная информация о параметрах широкополосных антенн приведена в приложении А.
4.1 Погрешность измерения напряженности поля
Погрешность измерения напряженности однородного поля синусоидального характера должна быть не хуже ±3 дБ. При измерениях должна быть использована антенна, соответствующая требованиям раздела 4, с измерительным приемником, соответствующим требованиям ГОСТ Р 51318.16.1.1.
Примечание - Данное требование не учитывает влияния измерительной площадки.
4.2 Полоса частот от 9 до 150 кГц
Опыт показал, что в данной полосе частот именно магнитная составляющая поля является основной причиной наблюдаемых эффектов воздействия ИРП.
4.2.1 Магнитная антенна
Для измерений магнитной составляющей излучения может быть использована электрически экранированная рамочная антенна в виде квадрата со сторонами равными 60 см либо соответствующая ферритовая антенна.
Напряженность магнитного поля измеряется в мкА/м или в дБ (исх. 1 мкА/м). Далее в тексте вместо дБ (исх. 1 мкА/м) применяется форма записи дБ (1 мкА/м). Значение нормы излучаемых ИРП в полосе частот от 9 до 150 кГц также должно быть выражено в этих единицах.
4.2.2 Симметрия антенны
Симметрия антенны должна быть такой, чтобы при вращении антенны в однородном поле уровень напряжения на выходе антенны при перекрестной поляризации поля был, по крайней мере, на 20 дБ ниже уровня, измеренного при параллельной поляризации.
4.3 Полоса частот от 150 кГц до 30 МГц
4.3.1 Электрическая антенна
Для измерения электрической составляющей излучения допускается использование как симметричной, так и несимметричной антенны. Если используется несимметричная (штыревая) антенна, то будет измеряться только значение при вертикальной поляризации электрического поля. Тип используемой антенны должен быть указан вместе с результатами измерений в протоколе.
Примечание - Информация, относящаяся к расчету характеристик функционирования штыревой антенны длиной 1 м, и характеристики схемы ее согласования приведены в приложении В.
Если расстояние между источником излучения и антенной менее 10 м, то общая длина антенны должна быть равна 1 м. Для расстояний более 10 м рекомендуемая длина антенны - 1 м, однако возможна и другая длина антенны, но она не должна превышать 10% длины измерительного расстояния.
Единицей измерения напряженности электрического поля является мкВ/м или, в логарифмических единицах, дБ (1 мкВ/м).
Нормы излучаемых ИРП должны быть выражены в этих единицах.
4.3.2 Магнитная антенна
Для измерений магнитной составляющей излучения должна использоваться электрически экранированная рамочная антенна в соответствии с 4.2.1.
Для выполнения измерений магнитных полей, имеющих низкое значение напряженности, вместо ненастроенных электрически экранированных рамочных антенн допускается использовать настроенные электрически симметричные рамочные антенны.
4.3.3 Симметрия антенны
Если используется симметричная электрическая или магнитная антенна, она должна соответствовать требованиям 4.2.2.
4.4 Полоса частот от 30 до 300 МГц
4.4.1 Электрическая антенна
В качестве опорной антенны применяют симметричный диполь.
4.4.1.1 Симметричный диполь
Для частот 80 МГц или выше антенна должна быть настраиваемой, а для частот ниже 80 МГц размер антенны должен соответствовать частоте 80 МГц. Антенна должна быть согласована с антенным кабелем с помощью согласующей цепи (устройства). Подсоединение к входу измерительного оборудования должно осуществляться после преобразования симметричного сигнала в несимметричный.
4.4.1.2 Укороченный диполь
Допускается применять диполь короче половины длины волны при выполнении следующих условий:
a) его общая длина должна быть более 1/10 длины волны на частоте измерения;
c) диполь должен обладать симметрией, аналогичной симметрии настроенного диполя (см. 4.4.2). Для этого может быть использован симметрирующий трансформатор;
d) для определения значения измеряемой напряженности поля используется градуировочная кривая, причем градуировочные коэффициенты антенны измеряют при соблюдении измерительного расстояния (т.е. при расстоянии, равном не менее трех длин диполя).
Примечание - Полученные таким образом градуировочные коэффициенты антенны должны обеспечить выполнение требования к погрешности измерений (не хуже ±3 дБ) однородных синусоидальных полей.
|
е) несмотря на снижение чувствительности измерителя напряженности поля ИРП при большом значении градуировочного коэффициента антенны, обусловленное малой длиной диполя, предел измерения измерителя напряженности поля (определяемый, например, шумом измерителя ИРП и коэффициентом передачи диполя) должен быть на 10 дБ ниже уровня измеряемого сигнала.
4.4.1.3 Широкополосная антенна
Использование широкополосной антенны допускается при условии, что она соответствует требованиям, установленным в 4.5.2 для сложной антенны.
4.4.2 Симметрия антенны
4.4.2.1 Введение
На поверхности кабеля, подсоединенного к приемной антенне (антенного кабеля), в процессе измерения ИРП могут возникать общие несимметричные токи. Эти общие несимметричные токи создают электромагнитные поля, которые могут восприниматься антенной и оказывать влияние на результаты измерения излучаемых ИРП.
Наибольшее влияние при наведении общих несимметричных токов в антенном кабеле оказывают:
a) электрическое поле, создаваемое испытуемым ТС, если поле имеет составляющую, параллельную антенному кабелю;
b) преобразование симметричного (полезного) сигнала антенны в общий несимметричный сигнал из-за несовершенства симметрирующего устройства приемной антенны.
В данном подпункте рассматривается влияние преобразования симметричного сигнала в общий несимметричный сигнал в симметрирующем устройстве на результаты измерения излучаемых ИРП.
Оценка влияния электрического поля, создаваемого испытуемым ТС [см. перечисление а)] - на рассмотрении (см. также примечание 1 к 4.4.2.2).
Как правило, логопериодические дипольные антенные решетки не требуют проверки преобразования симметричного сигнала в общий несимметричный сигнал в симметрирующем устройстве. С другой стороны, симметрирующие устройства дипольных, биконических и гибридных (совмещенных) биконическо-логопериодических антенн должны быть проверены.
4.4.2.2 Проверка преобразования симметричного сигнала в общий несимметричный сигнал в симметрирующем устройстве
1) Испытуемую приемную антенну с вертикальной поляризацией устанавливают так, чтобы ее центр находился на высоте 1,5 м над пластиной заземления. Антенный кабель выводят горизонтально на (1,5±0,1) м за последний приемный элемент антенны, а затем опускают его вертикально до пластины заземления, подводят к измерителю ИРП и подключают.
2) Передающую антенну с вертикальной поляризацией размещают на расстоянии 10 м (по горизонтали от центра испытуемой антенны) и устанавливают ее на высоте, при которой конец вибратора антенны находится на расстоянии 0,10 м от пластины заземления. Если на измерительной площадке обеспечивается измерительное расстояние 3 м, то необходимо провести проверку преобразования симметричного сигнала в общий несимметричный сигнал в симметрирующем устройстве, используя расстояние 3 м (если проверка преобразования уже была проведена при расстоянии 10 м и показала изменение менее ±0,5 дБ, то в проведении отдельного измерения при расстоянии 3 м нет необходимости).
3) Передающую антенну соединяют с источником сигнала, например, со следящим генератором; установив выходной уровень генератора таким, чтобы во всей рассматриваемой полосе частот отношение сигнал/шум превышало 10 дБ (к шумам относят внешние помехи и собственные шумы измерителя ИРП).
5) Испытуемую приемную антенну поворачивают на 180°, не меняя положения антенного кабеля и не вводя каких-либо изменений в размещение передающей антенны.
Примечания
1 Если критерий преобразования симметричного сигнала в общий несимметричный сигнал в симметрирующем устройстве по перечислению 7) не выполняется, то уровень общих несимметричных токов может быть уменьшен за счет установки ферритовых колец на антенный кабель. Ферритовые кольца также могут быть использованы для проверки влияния на антенный кабель электрического поля, создаваемого испытуемым ТС [см. 4.4.2.1, перечисление а)]. Целесообразно повторить измерения по перечислениям 1)-7) при установке на антенный кабель четырех ферритовых колец на расстоянии 20 см друг от друга. Если при использовании этих колец требования к преобразованию симметричного сигнала в общий несимметричный сигнал в симметрирующем устройстве будут обеспечены, то ферритовые кольца должны применяться при проведении измерений излучаемых ИРП. Кроме того, уменьшить наводку на антенный кабель возможно путем его протягивания на несколько метров по оси симметрии антенны, прежде чем опустить его к пластине заземления.
2 Если испытуемая приемная антенна установлена в полностью безэховой камере, возможно проведение проверки преобразования симметричного сигнала в общий несимметричный сигнал в симметрирующем устройстве в данной камере. При этом приемная антенна должна располагаться в месте выполнения измерений, а передающая антенна - в центре рабочего объема этой камеры. Камера должна отвечать критерию ±4 дБ.
3 Измерительная площадка с пластиной заземления или полностью безэховая камера должны соответствовать требованиям, предъявляемым к нормализованному затуханию площадки.
4 Во время измерений излучаемых ИРП при вертикальной поляризации необходимо, чтобы антенный кабель располагался горизонтально на расстоянии не менее 1,5 м по оси симметрии антенны.
5 Эффект наводки общих несимметричных токов в большой степени обусловлен взаимодействием антенны и части антенного кабеля, проходящего параллельно элементам антенны. Существует и значительно меньшее воздействие, которое зависит от неоднородности поля, воздействующего на антенну при стандартных условиях измерений на открытых измерительных площадках или в полностью безэховой камере.
6 У симметрирующих устройств, имеющих разъем для подключения кабеля измерителя ИРП сбоку (90° по направлению к траверсе антенны), следует использовать прямоугольный разъем для минимизации сдвига кабеля.
4.4.3 Кросс-поляризационная характеристика антенны
При размещении антенны в плоскополяризованном электромагнитном поле напряжение на нагрузке при ортогональной поляризации антенны и поля должно быть не менее чем на 20 дБ ниже напряжения на нагрузке при совпадении поляризации поля и антенны. Требование к кросс-поляризационной характеристике антенны следует применять к логопериодическим дипольным антенным решеткам, две половины каждого диполя которых расположены друг за другом. Следует учитывать, что большинство испытаний с применением таких антенн проводят на частотах свыше 200 МГц, а данное требование относится также к измерениям на частотах ниже 200 МГц. Однако для дипольных и биконических антенн данное требование не является обязательным, поскольку в силу симметрии их конструкции коэффициент ослабления поперечной поляризации у них более 20 дБ, причем данное значение является неотъемлемой характеристикой таких антенн. Эти антенны, а также рупорные антенны должны иметь коэффициент ослабления поперечной поляризации более 20 дБ, что должно быть подтверждено типовым испытанием, проводимым изготовителем антенн.
Для обеспечения условий квазисвободного пространства (см. 3.12) следует использовать безэховую камеру высокого качества или штативы для установки антенн на открытом полигоне, обеспечивающие установку антенн на достаточной высоте над землей. Для минимизации отражений от земли следует применять измерительные антенны с вертикальной поляризацией. Испытуемая антенна должна облучаться плоской волной. Разнесение между центром испытуемой антенны и антенной источника сигнала должно быть более одной длины волны.
Примечание - Для обеспечения облучения испытуемой антенны плоской волной необходимо использовать измерительную площадку хорошего качества.
Если мешающий сигнал на 20 дБ ниже уровня полезного сигнала, максимальное значение погрешности измерения полезного сигнала будет ±0,9 дБ. Максимальная погрешность возникает, если сигнал с поперечной поляризацией находится в фазе с сигналом с совпадающей (продольной) поляризацией.
Если отклик при приеме логопериодической дипольной антенной решеткой сигнала с поперечной поляризацией менее 20 дБ по сравнению с откликом при приеме сигнала с продольной поляризацией, оператор должен рассчитать неопределенность измерений и привести ее значение в протоколе вместе с результатом измерения.
Например, если для антенны отклик на сигнал с поперечной поляризацией равен минус 14 дБ относительно полезного сигнала с продольной поляризацией (уровень полезного сигнала 0 дБ), то максимальная неопределенность измерений будет иметь значение от минус 1,9 до плюс 1,6 дБ.
Для получения границ интервала неопределенности измерений необходимо сначала преобразовать напряжение путем деления сигналов с уровнем 0 дБ и 14 дБ на 20 и вычислить антилогарифм. Затем необходимо сложить меньший сигнал с большим, провести логарифмирование и полученный результат умножить на 20. В результате получится значение положительной погрешности измерения 1,6 дБ. Затем необходимо повторить эти вычисления при вычитании меньшего сигнала из большего, в результате получится значение отрицательной погрешности измерения минус 1,9 дБ.
При расчете стандартной неопределенности измерений используют большее значение при U-образной функции распределения вероятностей (см. ГОСТ Р 51318.16.4.2).
При вычислении значения неопределенности измерений излучаемых ИРП следует иметь в виду, что если уровень сигнала, измеренного при одной поляризации, превышает на 6 дБ или более уровень сигнала, измеренного при ортогональной поляризации, то логопериодическая дипольная антенная решетка, отклик которой на сигнал с поперечной поляризацией равен минус 14 дБ относительно отклика при приеме сигнала с продольной поляризацией, должна считаться отвечающей требованиям 20 дБ. Если разность между уровнями сигналов при вертикальной и горизонтальной поляризациях менее 6 дБ, то при использовании логопериодической дипольной антенной решетки, отклик которой при приеме сигнала с поперечной поляризацией составляет минус 14 дБ относительно отклика при приеме сигнала с продольной поляризацией, следует рассчитать дополнительную неопределенность измерений.
4.5 Полоса частот от 300 до 1000 МГц
4.5.1 Электрическая антенна
Если используется симметричный вибратор, то его характеристики должны соответствовать требованиям 4.4.1.1 и 4.4.2.
4.5.2 Сложная антенна
Так как в полосе частот от 300 до 1000 МГц чувствительность простой дипольной антенны низка, можно использовать более сложную антенну. Такая антенна должна удовлетворять условиям перечислений а)-d):
a) антенна должна иметь плоскую поляризацию. Симметрия антенны должна быть проверена так же, как симметрия простой дипольной антенны;
b) главный лепесток диаграммы излучения антенны должен быть таким, чтобы отклики в направлении прямого луча и в направлении луча, отраженного от земли, отличались не более чем на 1 дБ.
- при установке измерительной антенны в горизонтальное положение, соблюдалось условие
d) должен быть установлен градуировочный коэффициент антенны, обеспечивающий выполнение требований к погрешности измерений по 4.1.
4.6 Полоса частот от 1 до 18 ГГц
В спорном случае преимущество отдается результатам измерений, выполненным с рупорной антенной с установленным усилением или аналогичной рупорной антенной, с предварительно определенными градуировочными коэффициентами.
Примечание - Для выполнения измерений в полосе частот от 1 до 18 ГГц может быть использована любая линейно поляризованная антенна с определенными градуировочными коэффициентами, например логопериодическая вибраторная антенна. В данной полосе частот коэффициент усиления многих антенн, отличных от рупорных, может быть недостаточным, особенно при использовании в качестве измерителя ИРП анализаторов спектра. Следует убедиться, что при используемом измерительном расстоянии полная чувствительность измерения будет, по крайней мере, на 6 дБ ниже применяемой нормы, и что любые меры, используемые для повышения чувствительности (например предусилитель), не вызовут искажений, паразитных сигналов или других проблем, связанных с перегрузкой. Так как ширина диаграммы направленности логопериодической вибраторной антенны больше, чем у рупорной антенны, то при измерениях, проводимых с логопериодической вибраторной антенной, отражения от пластины заземления могут вызвать значительную погрешность.
4.7 Система рамочных антенн
В полосе частот от 9 кГц до 30 МГц влияние магнитной составляющей поля ИРП, излучаемого одиночным испытуемым ТС, может быть определено с помощью специальной системы рамочных антенн. При использовании системы рамочных антенн магнитные составляющие поля ИРП измеряют в единицах силы тока, наводимого магнитным полем во взаимно перпендикулярных больших рамочных антеннах. Применение системы рамочных антенн позволяет проводить измерения в помещении.
Система рамочных антенн состоит из трех круговых антенн диаметром 2 м (трехкоординатных рамочных антенн, ТРА), установленных на неметаллической подставке.
Примечание - Описание системы рамочных антенн приведено в приложении С.
Испытуемое ТС устанавливают в центре системы рамочных антенн. Максимальные размеры испытуемого ТС должны быть такими, чтобы расстояния между границами ТС и ТРА были не менее 0,2 м. Кабели, подключаемые к испытуемому ТС, должны быть собраны вместе и выходить из объема рамки в одном октанте камеры на расстоянии не менее 0,4 м от любой рамочной антенны.
Примечание - Методические указания по прокладке сигнальных кабелей приведены в приложении С.
Наличие трех взаимно перпендикулярных рамочных антенн (ТРА) позволяет проводить измерения излучаемого поля для всех видов поляризации с необходимой точностью и без вращения испытуемого ТС или изменения ориентации рамочных антенн.
Каждая из трех рамочных антенн должна пройти процедуру валидации в соответствии с требованиями, изложенными в приложении С, раздел С.4.
5 Измерительные площадки для измерения напряженности поля ИРП в полосе частот от 30 до 1000 МГц
При проведении измерений напряженности поля ИРП от испытуемых ТС необходимы условия окружающей обстановки, обеспечивающие правильность и повторяемость результатов измерений. Для ТС, испытания которых могут быть проведены только на месте их эксплуатации, необходимо использовать другие условия.
5.1 Открытая измерительная площадка
Измерения напряженности поля помех обычно проводят на открытой измерительной площадке. Открытые измерительные площадки представляют собой площадки, отличительной особенностью которых является ровный горизонтальный характер земной поверхности. Такие площадки должны быть свободны от зданий, электрических линий, ограждений, деревьев и т.п., а также свободны от подземных кабелей, трубопроводов и т.п. за исключением тех, которые необходимы для питания и работы испытуемого ТС.
Примечания
1 Особенности конструкции открытых измерительных площадок для измерений электромагнитных полей в полосе частот от 30 МГц до 1 ГГц приведены в приложении D.
2 Процедура валидации открытой измерительной площадки установлена в 5.6. Дополнительная информация, относящаяся к валидации измерительных площадок, приведена в приложении Е.
3 Критерий пригодности измерительной площадки см. в приложении F.
5.2 Укрытия для защиты от атмосферных воздействий
Если измерительная площадка используется в течение всего года, она должна иметь защиту от негативных атмосферных воздействий. Конструкция защитного сооружения может обеспечивать защиту либо всей площадки, включая испытуемое ТС и измерительную антенну, либо только испытуемого ТС. Используемые материалы должны быть прозрачными для радиочастотного излучения, чтобы не вызывать нежелательных отражений и затухания излучаемого поля испытуемого ТС.
Защитное сооружение должно иметь форму, позволяющую легко удалять снег, лед или воду.
Примечание - Более подробная информация приведена в приложении D.
5.3 Зона, свободная от препятствий
Для открытых измерительных площадок при измерении напряженности поля требуется зона вокруг испытуемого ТС и измерительной антенны, свободная от препятствий. Эта зона должна быть свободна от крупных объектов, отражающих электромагнитные поля, и должна быть достаточно большой, чтобы такие объекты вне свободной зоны оказывали минимальное воздействие на поля, измеряемые с помощью антенны. Для определения адекватности зоны, свободной от препятствий, необходимо провести испытания с целью валидации открытой измерительной площадки.
|
Рисунок 2 - Зона измерительной площадки с поворотным столом, свободная от препятствий (см. 5.3)
Для данного эллипса трасса мешающего луча, отраженного от любого объекта на периметре, равна удвоенной длине трассы прямого луча между фокусами. Если на поворотную платформу устанавливается испытуемое ТС больших размеров, то зона, свободная от препятствий, должна быть расширена.
Если площадка не оснащена поворотной платформой, т.е. испытуемое ТС является стационарным, то рекомендуемая зона, свободная от препятствий, представляет собой круг такого диаметра, чтобы радиальное расстояние от контура испытуемого ТС до границы зоны было равно измерительному расстоянию, умноженному на 1,5 (см. рисунок 3). В этом случае антенну перемещают вокруг испытуемого ТС с сохранением измерительного расстояния.
|
Рисунок 3 - Зона, свободная от препятствий при испытании стационарного ТС (см. 5.3)
Территория в пределах свободной зоны должна быть плоской. Допустимы небольшие скаты для обеспечения необходимого дренажа. Гладкость металлической пластины заземления (если используется) регламентируется в приложении D, раздел D.2. Измерительная аппаратура и операторы, проводящие измерения, должны располагаться вне свободной зоны.
5.4 Внешние радиочастотные электромагнитные поля на измерительной площадке
Уровни внешних радиочастотных электромагнитных полей на измерительной площадке должны быть достаточно низкими в сравнении с уровнями измеряемых излучаемых ИРП. Качество площадки в этом отношении целесообразно оценивать применительно к четырем категориям (а-d), приведенным ниже в порядке снижения практической пригодности площадки:
- категория а - внешние излучения имеют уровни не менее чем на 6 дБ ниже уровней измеряемых ИРП;
- категория b - уровни некоторых внешних излучений отличаются от уровней измеряемых ИРП менее чем на 6 дБ;
- категория с - уровни некоторых внешних излучений превышают уровни измеряемых ИРП либо периодически (например, в случае, если достаточно продолжительные перерывы радиопередач позволяют провести измерения на измерительной площадке), либо длительное время, но лишь на ограниченных идентифицируемых частотах;
- категория d - внешние излучения имеют уровни, превышающие уровни измеряемых ИРП в большей части полосы частот измерений, и действуют длительное время.
При выборе измерительной площадки следует обратить внимание на обеспечение точности измерений при существующей электромагнитной обстановке и степень подготовленности имеющегося персонала.
Примечание - Для обеспечения качественных измерений рекомендуется, чтобы уровень внешних излучений был на 20 дБ ниже уровня излучений ИРП, подлежащих измерению.
5.5 Металлическая пластина заземления
Для изготовления пластины заземления могут использоваться различные материалы вплоть до металлов с высокой проводимостью. В качестве пластины заземления можно использовать почву.
Пластина заземления может быть расположена на уровне земли или поднята над землей с использованием платформы подходящих размеров или крыши здания. Предпочтительной является металлическая пластина заземления, однако в стандартах, распространяющихся на ТС определенных видов и применений, могут быть рекомендации не использовать такую пластину заземления. Пригодность металлической пластины заземления будет зависеть от того, соответствует ли измерительная площадка требованиям к валидации площадки в соответствии с 5.6. Если металлический материал не используется, необходимо с особым вниманием отнестись к выбору измерительной площадки с тем, чтобы ее отражающие свойства не менялись в зависимости от времени, погодных условий или из-за находящихся в земле металлических предметов, таких, например, как трубы, кабели и т.д., или из-за неоднородности почвы. Такие измерительные площадки обычно имеют характеристики затухания, отличные от затухания площадок с металлической пластиной заземления.
5.6 Процедура валидации открытой измерительной площадки
Приведенную ниже процедуру валидации открытой измерительной площадки и требования к нормализованному затуханию площадки применяют для оценки измерительной площадки с металлической пластиной заземления. Для других измерительных площадок данная процедура валидации используется при определении возможных неоднородностей площадки, которые необходимо исследовать. Процедуру валидации открытой измерительной площадки не применяют к безэховым камерам. Процедура валидации безэховой камеры требует более детальных технических требований.
Примечание - Обоснование критерия пригодности измерительной площадки 4 дБ приведено в приложении F.
Отклонение измеренного значения нормализованного затухания площадки от теоретического значения не должно использоваться для корректировки измеренного значения напряженности поля испытуемого ТС. Данная процедура должна применяться только для валидации открытой измерительной площадки.
Примечание - Причина различий в таблицах Е.1-Е.3 (см. приложение Е) заключается в том, что для широкополосной антенны и настроенного полуволнового диполя выбраны различные геометрические параметры, прежде всего вследствие практических ограничений, связанных с применением диполя.
|
* Для измерительного расстояния 30 м.
Рисунок 4 - Расположение оборудования для измерения затухания площадки при горизонтальной поляризации (см. 5.6 и приложение Е)
|
* Для измерительного расстояния 30 м.
Рисунок 5 - Расположение оборудования для измерения затухания площадки при вертикальной поляризации с использованием настраиваемых диполей (см. 5.6 и приложение Е)
Значения нормализованного затухания площадки для частот, отличных от приведенных в таблицах Е.1-Е.3, можно получить с помощью линейной интерполяции табличных значений.
В каждой из таблиц Е.1-Е.3 применяют следующие обозначения:
Рекомендуется сначала проводить измерения нормализованного затухания площадки при горизонтальной поляризации. Так как такие измерения менее чувствительны, чем измерения при вертикальной поляризации, то измеренные значения нормализованного затухания площадки должно удовлетворять критерию ±4 дБ относительно значений, приведенных в приложении Е, таблицы Е.1-Е.3. Если есть превышение критерия ±4 дБ, следует провести перепроверку метода измерения нормализованного затухания площадки, правильность мест расположения измерительных приборов и точность градуировочных коэффициентов антенн. Если все же критерий ±4 дБ будет превышен, это означает, что измерительная площадка имеет значительную аномалию, которую необходимо обнаружить и устранить до проведения измерения нормализованного затухания площадки при вертикальной поляризации
.
5.6.1 Измерение нормализованного затухания площадки
Необходимо также отметить, что
Поправочный коэффициент в соответствии с приложением Е, таблица Е.4, учитывающий взаимное полное сопротивление антенн, применяют лишь для рекомендуемой геометрии площадок при измерительном расстоянии 3 м, горизонтальной поляризации и использовании настраиваемых полуволновых диполей.
При проведении измерений нормализованного затухания площадки допускается использование двух методов в зависимости от имеющихся в наличии измерительных приборов и от того, какая измерительная антенна применяется - широкополосная или настроенный диполь. Как указано в приложении Е, оба метода измерений при правильном их применении дают близкие результаты. Ниже приведено краткое описание каждого метода измерения.
a) Метод дискретных частот
Измерения при данном методе проводят по очереди на определенных частотах, представленных в таблицах Е.1-Е.3. На каждой частоте приемную антенну перемещают по высоте в пределах, указанных в таблице, и фиксируют максимальный принимаемый сигнал. Измеренные значения подставляют в уравнение (3) для получения измеренного значения нормализованного затухания площадки.
Примечание - Рекомендуемая процедура записи данных, вычислений измеренных значений нормализованного затухания площадки и сравнения их с теоретическими значениями нормализованного затухания площадки приведены в приложении Е.
b) Метод сканирования частоты
Измерения данным методом проводят с использованием широкополосных антенн и автоматизированного измерительного оборудования со следящим генератором (трекинг-генератором), имеющего возможность накопления измеренных данных и определения пиковых (максимальных) значений. Применяя этот метод, необходимо осуществлять сканирование высоты антенны и одновременное сканирование по частоте в установленных пределах. Скорость сканирования по частоте должна быть значительно выше скорости сканирования высоты антенны.
В остальном метод измерения b) является таким же, как и метод измерения а).
Подробная процедура измерений приведена в приложении Е.
5.6.2 Определение градуировочного коэффициента антенн
При измерении нормализованного затухания площадки необходимо учитывать точные значения градуировочных коэффициентов антенн. Как правило, значения коэффициентов калибровки, сообщаемые изготовителем антенн, неприменимы, за исключением случаев, когда они соответствуют конкретному образцу антенн или были измерены индивидуально. При измерениях необходимо применять линейно поляризованные антенны. Градуировочные коэффициенты антенн, сообщаемые изготовителем антенн, допускается использовать для определения потерь, вносимых симметрирующим устройством, в числе потерь, обусловленных другими факторами. Если применяются отдельные симметрирующие устройства или любые кабельные системы (переходы), их влияние должно быть учтено.
Формулы расчета градуировочных коэффициентов при использовании настраиваемых полуволновых диполей приведены в приложении Е.
5.6.3 Отклонения нормализованного затухания площадки
Если отклонения измеренных значений нормализованного затухания площадки от установленных превышают значение ±4 дБ, то необходимо еще раз проверить:
a) правильность процедуры измерений;
b) точность измерения градуировочных коэффициентов антенн;
c) отклонение значения напряжения источника сигнала или точность измерений и установки входного аттенюатора приемника или анализатора спектра.
Если ошибки по перечислениям а)-с) не выявлены, то измерительную площадку следует признать непригодной для проведения измерений и необходимы детальные исследования возможных причин превышения критерия ±4 дБ.
Возможные ошибки, которые могут появиться при измерениях нормализованного затухания площадки, приведены в приложении F.
В связи с тем, что измерения при вертикальной поляризации антенн, как правило, более восприимчивы к аномалиям площадки, необходимо отметить, что исследования аномалий следует проводить преимущественно по результатам этих более чувствительных измерений, а не по результатам измерения при горизонтальной поляризации.
Ключевые вопросы исследований включают в себя:
a) соответствие размеров и конструкции пластины заземления установленным требованиям;
b) наличие препятствий по периметру измерительной площадки, которые могут вызвать нежелательное рассеяние электромагнитных волн;
c) характеристики укрытия от влияния атмосферных явлений;
d) неоднородность пластины заземления по окружности (периметру) поворотного стола (платформы), когда поверхность поворотного стола выполнена из проводящего материала и находится на той же высоте, что и пластина заземления;
e) целостность тонких диэлектрических покрытий пластины заземления;
f) наличие технологических отверстий в пластине заземления.
5.7 Пригодность альтернативных измерительных площадок с пластиной заземления
Существует большое число различных измерительных площадок, созданных для измерений излучаемых помех. Большинство из них защищены от воздействия атмосферных явлений и нежелательного влияния окружающей среды. К ним относятся открытые измерительные площадки с укрытиями от атмосферных явлений и альтернативные измерительные площадки - экранированные помещения, облицованные поглощающим материалом (безэховые камеры).
Вне зависимости от материала, применяемого при строительстве помещения, включающего в себя измерительную площадку, существует вероятность того, что результаты одиночного измерения нормализованного затухания площадки, проведенные в соответствии с 5.6, не будут адекватно подтверждать пригодность указанной альтернативной измерительной площадки.
Для оценки пригодности альтернативной измерительной площадки рекомендуется приведенная ниже процедура, основанная на проведении множественных измерений нормализованного затухания площадки применительно к объему, занимаемому испытуемым ТС. Альтернативную измерительную площадку можно считать пригодной для проведения измерений, если отклонения всех указанных измерений нормализованного затухания площадки находятся в пределах допускаемой погрешности ±4 дБ.
Требования, установленные в настоящем разделе, относятся к альтернативным измерительным площадкам с проводящей пластиной заземления.
5.7.1 Нормализованное затухание для альтернативных измерительных площадок с пластиной заземления
Для альтернативной измерительной площадки с пластиной заземления проведение одного измерения нормализованного затухания не является достаточным для того, чтобы обнаружить возможные отражения от элементов конструкции или ВЧ поглощающего материала, нанесенного на стены и потолок камеры. Для таких площадок указывают "рабочий объем" как объем, который "занимает" самое большое подлежащее испытанию ТС или система при его (ее) вращении на 360° относительно положения центра, например, на поворотном столе. Поэтому для оценки пригодности площадки может в общем случае потребоваться выполнение не менее 20 отдельных измерений нормализованного затухания площадки - в пяти позициях на плоскости площадки (в центре, слева, справа, спереди и сзади относительно центра рабочего объема), при двух видах поляризации (горизонтальной и вертикальной) и двух значениях высоты (1 и 2 м - при горизонтальной, 1 и 1,5 м - при вертикальной поляризациях). Типичные схемы измерений представлены на рисунках 6а) и b).
Указанные выше измерения проводят с помощью широкополосной антенны, расстояния измеряют относительно места расположения центра антенны. Приемная и передающая антенны должны устанавливаться так, чтобы их элементы были параллельны друг другу и перпендикулярны к оси измерения.
При вертикальной поляризации положения передающей антенны (кроме центрального) должны находиться на краю рабочего объема. При этом нижний конец антенны должен находиться на высоте не менее 25 см от пола, поэтому при измерениях в самой нижней точке высота центра антенны может несколько превышать 1 м.
Если расстояние между конструкциями или поглощающим материалом на боковых стенах и периферией испытуемого ТС менее 1 м, то при измерениях при горизонтальной поляризации в положениях справа и слева антенна сдвигается в направлении к центру так, чтобы конец антенны был на периферии испытуемого ТС либо отстоял от него не более чем на 10% диаметра рабочего объема. Передняя и задняя позиции антенны должны находиться на периферии рабочего объема.
Число необходимых измерений можно уменьшить при следующих условиях:
а) измерения при вертикальной и горизонтальной поляризациях в задней позиции можно не проводить, если ближайшая точка камеры или поглощающего материала отстоит от задней границы рабочего объема более чем на 1 м.
Примечание - У источников излучаемых помех, расположенных вблизи диэлектрических конструкций, могут происходить изменения в распределении токов, что может сказаться на свойствах излучения источника в данной позиции. Если испытуемое ТС размещается рядом с такими конструкциями, требуются дополнительные измерения затухания площадки;
b) общее число измерений при горизонтальной поляризации и размещении антенны вдоль диаметра рабочего объема в левом и правом положениях может быть уменьшено до минимального, при котором площади, ограниченные линией пересечения диаграммы направленности антенн, охватывают 90% диаметра;
c) измерения при вертикальной поляризации антенны на высоте 1,5 м можно не проводить, если высота испытуемого ТС, включая все, что находится на столе, будет менее 1,5 м;
d) если размеры рабочего объема не более 1 м в глубину, 1,5 м - в ширину и 1,5 м в высоту, включая стол (если используется), то при горизонтальной поляризации требуется проведение измерений только в центральной, передней и задней позициях на высоте 1 и 2 м. Если действуют требования перечисления а), то измерения в задней позиции допускается не проводить. При этом потребуется не менее восьми измерений - в четырех позициях при вертикальной поляризации (слева, в центре, справа и спереди) для одной высоты и в четырех позициях при горизонтальной поляризации (в центре и спереди) для двух значений высоты; см. рисунки 6с) и d).
Измерения нормализованного затухания площадки должны проводиться при постоянном расстоянии между приемной и передающей антеннами в соответствии с таблицами 1 и 2, включающими в себя значения нормализованного затухания площадки при ограничении высоты сканирования значениями от 1 до 4 м (для измерительного расстояния 30 м). Для сохранения соответствующего расстояния приемную антенну нужно передвигать по линии к центру поворотного стола (см. рисунок 6, листы 1-4*).
Таблица 1 - Нормализованное затухание площадки (рекомендуемая геометрия для настраиваемых полуволновых диполей при горизонтальной поляризации)
|
|
|
|
Частота измерения , МГц | Нормализованное затухание площадки , дБ, для измерительного расстояния , высоты расположения передающей антенны 2 м и высоты расположения приемной антенны 1-4 м | ||
| 3 м | 10 м | 30 м |
30 | 11,0 | 24,1 | 41,7 |
35 | 8,8 | 21,6 | 39,1 |
40 | 7,0 | 19,4 | 36,8 |
45 | 5,5 | 17,5 | 34,7 |
50 | 4,2 | 15,9 | 32,9 |
60 | 2,2 | 13,1 | 29,8 |
70 | 0,6 | 10,9 | 27,2 |
80 | -0,7 | 9,2 | 24,9 |
90 | -1,8 | 7,8 | 23,0 |
100 | -2,8 | 6,7 | 21,2 |
120 | -4,4 | 5,0 | 18,2 |
140 | -5,8 | 3,5 | 15,8 |
160 | -6,7 | 2,3 | 13,8 |
180 | -7,2 | 1,2 | 12,0 |
200 | -8,4 | 0,3 | 10,6 |
250 | -10,6 | -1,7 | 7,8 |
300 | -12,3 | -3,3 | 6,1 |
400 | -14,9 | -5,8 | 3,5 |
500 | -16,7 | -7,6 | 1,6 |
600 | -18,3 | -9,3 | 0 |
700 | -19,7 | -10,6 | -1,4 |
800 | -20,8 | -11,8 | -2,5 |
900 | -21,8 | -12,9 | -3,5 |
1000 | -22,7 | -13,8 | -4,5 |
Таблица 2 - Нормализованное затухание площадки (рекомендуемая геометрия для широкополосных антенн) при горизонтальной и вертикальной поляризациях антенны
|
|
|
|
|
|
|
|
Частота измерения , МГц | Нормализованное затухание площадки* , дБ, для измерительного расстояния , высоты расположения передающей антенны , высоты расположения приемной антенны 1-4 м | ||||||
| при горизонтальной поляризации | при вертикальной поляризации | |||||
| 3 м; 1 м | 10 м; 1 м | 30 м; 1 м | 3 м; 1 м | 3 м; 1,5 м | 10 м; 1 м | 30 м; 1 м |
30 | 15,8 | 29,8 | 47,8 | 8,2 | 9,3 | 16,7 | 26,0 |
35 | 13,4 | 27,1 | 45,1 | 6,9 | 8,0 | 15,4 | 24,7 |
40 | 11,3 | 24,9 | 42,8 | 5,8 | 7,0 | 14,2 | 23,5 |
45 | 9,4 | 22,9 | 40,8 | 4,9 | 6,1 | 13,2 | 22,5 |
50 | 7,8 | 21,1 | 38,9 | 4,0 | 5,4 | 12,3 | 21,6 |
60 | 5,0 | 18,0 | 35,8 | 2,6 | 4,1 | 10,7 | 20 |
70 | 2,8 | 15,5 | 33,1 | 1,5 | 3,2 | 9,4 | 18,7 |
80 | 0,9 | 13,3 | 30,8 | 0,6 | 2,6 | 8,3 | 17,5 |
90 | -0,7 | 11,4 | 28,8 | -0,1 | 2,1 | 7,3 | 16,5 |
100 | -2,0 | 9,7 | 27 | -0,7 | 1,9 | 6,4 | 15,6 |
120 | -4,2 | 7,0 | 23,9 | -1,5 | 1,3 | 4,9 | 14,0 |
140 | -6,0 | 4,8 | 21,2 | -1,8 | -1,5 | 3,7 | 12,7 |
160 | -7,4 | 3,1 | 19 | -1,7 | -3,7 | 2,6 | 11,5 |
180 | -8,6 | 1,7 | 17 | -1,3 | -5,3 | 1,8 | 10,5 |
200 | -9,6 | 0,6 | 15,3 | -3,6 | -6,7 | 1,0 | 9,6 |
250 | -11,7 | -1,6 | 11,6 | -7,7 | -9,1 | -0,5 | 7,7 |
300 | -12,8 | -3,3 | 8,8 | -10,5 | -10,9 | -1,5 | 6,2 |
400 | -14,8 | -5,9 | 4,6 | -14,0 | -12,6 | -4,1 | 3,9 |
500 | -17,3 | -7,9 | 1,8 | -16,4 | -15,1 | -6,7 | 2,1 |
600 | -19,1 | -9,5 | 0 | -16,3 | -16,9 | -8,7 | 0,8 |
700 | -20,6 | -10,8 | -1,3 | -18,4 | -18,4 | -10,2 | -0,3 |
800 | -21,3 | -12,0 | -2,5 | -20,0 | -19,3 | -11,5 | -1,1 |
900 | -22,5 | -12,8 | -3,5 | -21,3 | -20,4 | -12,6 | -1,7 |
1000 | -23,5 | -13,8 | -4,4 | -22,4 | -21,4 | -13,6 | -3,5 |
* Данные применимы к антеннам, имеющим просвет над пластиной заземления не менее 25 см при высоте расположения их центра на высоте 1 м над пластиной заземления при вертикальной поляризации. |
|
а) При вертикальной поляризации антенны
|
в) При горизонтальной поляризации антенны
Рисунок 6 - Расположение антенн на альтернативной измерительной площадке при измерении нормализованного затухания площадки, лист 1
|
с) При вертикальной поляризации антенн при испытании ТС, размеры которого не превышают объема глубиной 1 м, шириной 1,5 м, высотой 1,5 м и с периферией, находящейся на расстоянии более 1 м от ближайшей конструкции из материала, который может вызвать нежелательные отражения
|
d) При горизонтальной поляризации антенн при испытании ТС, размеры которого не превышают объема глубиной 1 м, шириной 1,5 м, высотой 1,5 м и с периферией, находящейся на расстоянии более 1 м от ближайшей конструкции из материала, который может вызвать нежелательные отражения
Рисунок 6, лист 2
Альтернативная измерительная площадка с пластиной заземления считается пригодной для проведения испытания на излучаемые помехи, если все измерения нормализованного затухания площадки, приведенные выше, соответствуют требованиям 5.7.2 и требованиям к пластине заземления в соответствии с 5.7.3.
Примечание - Если для подтверждения пригодности альтернативной измерительной площадки необходимы другие испытания, проводят дополнительные исследования.
5.7.2 Затухание площадки
Измерительная площадка считается пригодной для проведения измерений излучаемого электромагнитного поля, если результаты измерения нормализованного затухания площадки при вертикальной и горизонтальной поляризациях находятся в пределах ±4 дБ от теоретического значения нормализованного затухания для идеальной площадки.
5.7.3 Проводящая пластина заземления
На площадке для измерений излучаемых ИРП необходимо иметь проводящую пластину заземления. Проводящая пластина заземления должна выступать, по крайней мере, на 1 м за периферию испытуемого ТС и измерительной антенны, а также покрывать всю площадь между испытуемым ТС и антенной. Пластина заземления должна быть металлической без отверстий или зазоров, имеющих профильные размеры более 1/10 длины волны на максимальной частоте измерения. Если результаты измерения нормализованного затухания площадки не отвечают критерию ±4 дБ, может потребоваться проводящая пластина заземления больших размеров.
Примечание - Проводимые в настоящее время исследования свидетельствуют о необходимости установления минимальных размеров проводящей пластины заземления.
5.8 Пригодность измерительных площадок без пластины заземления
В настоящем подразделе приведена процедура валидации измерительных площадок без пластины заземления, предназначенных для проведения испытаний в полосе частот от 30 до 1000 МГц.
5.8.1 Измерения на измерительных площадках, обеспечивающих условия свободного пространства, реализованные в экранированных помещениях, полностью облицованных поглощающим материалом
Экранированное помещение, полностью покрытое поглощающим материалом (полностью безэховая камера), может быть использовано для измерений излучаемых ИРП. Нормы излучаемых ИРП при использовании полностью безэховых камер должны быть установлены в соответствующих стандартах в области ЭМС (общих стандартах, стандартах на группы ТС или ТС конкретного вида). Соответствие нормам ИРП при измерениях в полностью безэховых камерах должно устанавливаться также, как при измерениях на открытой измерительной площадке.
Полностью безэховая камера предназначена для моделирования свободного пространства с тем, чтобы на приемную измерительную антенну приходил только прямой луч от передающей антенны или от испытуемого ТС. Все отраженные лучи должны минимизироваться за счет применения на всех стенах, потолке и полу безэховой камеры соответствующего ВЧ поглощающего материала.
5.8.2 Пригодность измерительной площадки
Для определения пригодности измерительной площадки, обеспечивающей условия свободного пространства, должна быть проведена валидация площадки. Валидацию безэховых камер проводят методами, приведенными ниже, - методом опорной измерительной площадки и методом нормализованного затухания площадки.
5.8.2.1 Теоретическое нормализованное затухание площадки
Ниже приведены сведения о нормализованном затухании измерительных площадок, обеспечивающих условия свободного пространства для бесконечно малых антенн.
Примечание - На частотах ниже 110 МГц при измерении на расстоянии 3 м и на частотах ниже 60 МГц при измерении на расстоянии 5 м имеют место эффекты ближнего поля. Их можно рассчитать для каждой отдельной измерительной площадки.
На частотах ниже 60 МГц при измерительном расстоянии 5 м или на частотах ниже 110 МГц при измерительном расстоянии 3 м при анализе каждого из испытательных объемов, указанных в таблице 3, и сравнении нормализованного затухания площадки с теоретическим значением нормализованного затухания площадки (см. рисунок 7) необходимо применить коэффициенты коррекции для ближнего поля. Коэффициенты коррекции для ближнего поля зависят от характеристик антенн, измерительного расстояния, используемого рабочего объема и должны быть определены методами числового моделирования.
|
При использовании альтернативного метода опорной измерительной площадки (см. 5.8.2.2.1) коэффициенты коррекции для ближнего поля не применяют, если при измерениях на опорной измерительной площадке и при валидации безэховой камеры используются те же антенны и частоты.
Для получения доступа к полной версии без ограничений вы можете выбрать подходящий тариф или активировать демо-доступ.