ГОСТ Р МЭК 60247-2013
НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ
ЖИДКОСТИ ИЗОЛЯЦИОННЫЕ
ОКС 75.100
Дата введения 2014-01-01
Предисловие
1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием "Всероссийский научно-исследовательский центр стандартизации, информации и сертификации сырья, материалов и веществ" (ФГУП "ВНИЦСМВ") на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 4
2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии
3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 29 апреля 2013 г. N 65-ст
При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты, сведения о которых приведены в дополнительном приложении ДА
5 ВВЕДЕН ВПЕРВЫЕ
6 ПЕРЕИЗДАНИЕ. Октябрь 2019 г.
Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. N 162-ФЗ "О стандартизации в Российской Федерации". Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе "Национальные стандарты", а официальный текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)
Введение
Здоровье и безопасность
Общее предупреждение. В настоящем стандарте не предусмотрено рассмотрение всех вопросов обеспечения безопасности, связанных с его использованием. Пользователь стандарта несет ответственность за обеспечение соответствующих мер безопасности и охраны здоровья и определяет целесообразность применения законодательных ограничений перед его использованием.
Окружающая среда
Применение настоящего стандарта связано с использованием жидких диэлектриков, химических продуктов, используемых контейнеров для образцов и твердых веществ, загрязненных маслом. Их хранение и утилизация должны проводиться в соответствии с местными нормативными актами, учитывающими их воздействие на окружающую среду. Для предотвращения проникновения этих жидкостей в окружающую среду должны быть приняты соответствующие меры предосторожности.
1 Область применения
Настоящие методы предназначены для проведения эталонных испытаний неиспользованных жидкостей. Они также могут быть применены для жидкостей, используемых в трансформаторах, кабелях и другом электрооборудовании. Однако методы применимы только для однофазной жидкости. Для проведения ежедневных испытаний могут быть использованы упрощенные процедуры (см. приложение C).
Для изоляционных жидкостей, не являющихся углеводородными, могут потребоваться альтернативные процедуры очистки.
2 Нормативные ссылки
В настоящем стандарте использованы нормативные ссылки на следующие стандарты. Для датированных ссылок применяют только указанное издание ссылочного стандарта, для недатированных - последнее издание (включая все изменения).
________________
________________
IEC 60475, Method of sampling liquid dielectrics (Метод отбора проб жидких диэлектриков)
IEC 61620, Insulating liquids - Determination of dielectric dissipation factor by measurement of the conductance and capacitance - Test method (Изоляционные жидкости. Определение тангенса угла диэлектрических потерь измерением проводимости и емкости. Метод испытания)
3 Термины и определения
В настоящем стандарте применены следующие термины с соответствующими определениями:
3.3 удельное сопротивление (объемное) [d. c. resistivity (volume)]: Объемное удельное сопротивление изоляционного материала определяется как отношение напряженности электрического поля постоянного тока к плотности установившегося тока в материале.
4 Общие положения
На промышленной частоте и при достаточно высокой температуре, как рекомендовано в настоящем методе, потери определяются проводимостью жидкости, а именно, присутствием в ней носителей свободных зарядов. Поэтому результаты измерения диэлектрических характеристик изоляционных жидкостей высокой степени чистоты являются индикатором присутствия загрязняющих веществ.
Тангенс угла диэлектрических потерь, как правило, обратно пропорционален частоте измерения и зависит от вязкости среды. Значение напряжения испытания при измерении тангенса угла диэлектрических потерь является менее важным и часто регулируется чувствительностью измерительного моста. Однако необходимо помнить, что слишком высокие значения напряжения приводят к вторичным явлениям на электродах, нагреванию диэлектрика, разрядам и т.д.
4.2 Удельное сопротивление
Удельное сопротивление, измеряемое методом настоящего стандарта, не является истинным удельным сопротивлением. Приложение напряжения постоянного тока может со временем изменять начальные характеристики жидкости из-за миграции зарядов. Истинное удельное сопротивление можно определить только при низком напряжении сразу же после его приложения. В настоящем стандарте используют относительно высокое напряжение, прилагаемое в течение длительного промежутка времени, и получаемые результаты обычно отличаются от соответствующих результатов по МЭК 61620.
Результаты измерения удельного сопротивления жидкостей, проводимого по настоящему стандарту, зависят от условий проведения испытаний:
a) Температура
Удельное сопротивление весьма чувствительно к изменениям температуры. Зависимость удельного сопротивления от обратной температуры в градусах Кельвина (1/К) обычно является экспоненциальной. Поэтому измерения проводят при точно установленных значениях температуры.
b) Параметры электрического поля
Удельное сопротивление данного образца зависит от приложенного напряжения. Для получения сопоставимых результатов испытания проводят при приблизительно равных градиентах напряжения и одинаковой полярности. Указывают градиент напряжения и полярность.
c) Время электризации
При приложении напряжения постоянного тока к образцу сила электрического тока уменьшается вследствие перемещения носителей заряда к электродам. Общепринятое время электризации составляет 1 мин. Изменение времени электризации приводит к заметному изменению результатов испытаний [для некоторых жидкостей с большой вязкостью может потребоваться значительно большее время электризации (см. 14.2)].
4.3 Последовательность измерений
4.4 Факторы, приводящие к ошибочным результатам
На диэлектрическую проницаемость влияет наличие большого количества загрязнений. Однако на DDF и удельное сопротивление сильное влияние оказывают даже незначительные количества загрязняющих веществ.
Получение недостоверных результатов обычно связано с загрязнениями, обусловленными неправильным отбором проб жидких образцов или обращением с ними, неполной очисткой испытательной камеры, поглощением воды или присутствием нерастворенной воды.
Продолжительное воздействие света в процессе хранения приводит к ухудшению диэлектрических характеристик. Для сведения к минимуму ошибочных результатов, вызываемых загрязнением, используют стандартные процедуры хранения и транспортирования жидких образцов, а также сборки и очистки испытательных камер.
5 Аппаратура
5.1 Испытательная камера
5.1.1 Конструкция камеры должна обеспечивать демонтаж для очистки всех ее деталей и повторную сборку без существенного изменения электрической емкости пустой камеры. Конструкция камеры должна обеспечивать ее использование при установленной постоянной температуре и камера должна быть оснащена средствами для измерения и контроля температуры жидкости с требуемой точностью. Это может быть обеспечено использованием внешнего нагрева термостата/бани или путем внутреннего электрического нагрева камеры.
5.1.2 Материалы, используемые в конструкции камеры, должны быть непористыми и способными выдерживать установленную температуру. Изменение температуры не должно влиять на регулировку электродов.
5.1.3 Поверхности электродов, соприкасающиеся с испытуемой жидкостью, должны иметь гладкое покрытие для облегчения их очистки. Между испытуемой жидкостью и электродами не должно происходить химических реакций. Чистящие средства также не должны оказывать влияние на электроды. Камеры, изготовленные из нержавеющей стали, подходят для испытаний всех типов изоляционных жидкостей. Не следует использовать алюминий или его сплавы, поскольку они могут подвергаться коррозии под действием щелочных моющих средств.
Примечание - Установлено, что электроды с гальваническим покрытием поверхности являются менее подходящими, чем твердые металлические электроды. Однако поверхности с гальваническим покрытием из золота, никеля или родия были признаны подходящими при условии, что покрытие качественное и устойчиво к повреждениям. Инвар (сплав железа с никелем) с гальваническим покрытием из родия является подходящим материалом и обладает дополнительным преимуществом - незначительным тепловым расширением. Также можно использовать латунь с гальваническим покрытием из никеля или золота и нержавеющую сталь с гальваническим покрытием из никеля.
Примечание - Кварцевое стекло является подходящим материалом для использования в качестве изоляционного материала в камере. Вследствие различия между коэффициентами линейного расширения обычных металлов и кварцевого стекла между соединениями должен быть достаточный радиальный зазор. Такой зазор может приводить к уменьшению точности определения взаимного расположения электродов.
5.1.5 Расстояние между экранированным электродом и измерительным электродом в направлении, параллельном поверхности жидкости и твердого изоляционного материала, должно быть достаточно большим для того, чтобы выдерживать испытательное напряжение.
Для получения доступа к полной версии без ограничений вы можете выбрать подходящий тариф или активировать демо-доступ.