ГОСТ 33405-2015 Методы испытаний химической продукции, представляющей опасность для окружающей среды. Определение спектра поглощения в ультрафиолетовой и видимой областях спектрофотометрическим методом.
ГОСТ 33405-2015
МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ
МЕТОДЫ ИСПЫТАНИЙ ХИМИЧЕСКОЙ ПРОДУКЦИИ, ПРЕДСТАВЛЯЮЩЕЙ ОПАСНОСТЬ ДЛЯ ОКРУЖАЮЩЕЙ СРЕДЫ
Определение спектра поглощения в ультрафиолетовой и видимой областях спектрофотометрическим методом
Testing of chemicals of environmental hazard. Determination of the UV-VIS absorption spectral by spectrophotometric method
МКС 13.020.01
Дата введения 2016-09-01
Предисловие
Цели, основные принципы и общие правила проведения проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены"
Сведения о стандарте
1 ПОДГОТОВЛЕН Межгосударственным техническим комитетом по стандартизации МТК 339 "Безопасность сырья, материалов и веществ" на основе собственного перевода на русский язык англоязычной версии международного документа, указанного в пункте 5
2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии
3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 22 июля 2015 г. N 78-П)
За принятие проголосовали:
|
|
|
Краткое наименование страны по МК (ИСО 3166) 004-97 | Код страны по МК (ИСО 3166) 004-97 | Сокращенное наименование национального органа по стандартизации |
Армения | AM | Минэкономики Республики Армения |
Беларусь | BY | Госстандарт Республики Беларусь |
Казахстан | KZ | Госстандарт Республики Казахстан |
Киргизия | KG | Кыргызстандарт |
Россия | RU | Росстандарт |
Таджикистан | TJ | Таджикстандарт |
4 Приказом Федерального агентства по техническому регулированию и метрологии от 21 октября 2015 г. N 1606-ст межгосударственный стандарт ГОСТ 33405-2015 введен в действие в качестве национального стандарта Российской Федерации с 1 сентября 2016 г.
5 Настоящий стандарт является модифицированным по отношению к международному документу OECD, Test No. 101:1981* "Спектры поглощения в УФ и видимой области (спектрофотометрический метод") ["UV-VIS Absorption spectra (Spectrophotometric method)", MOD] путем изменения структуры. Сопоставление структуры настоящего стандарта со структурой примененного в нем международного документа приведено в дополнительном приложении ДА.
Наименование настоящего стандарта изменено относительно наименования указанного международного документа для приведения в соответствие с ГОСТ 1.5 (подраздел 3.6)
6 ВВЕДЕН ВПЕРВЫЕ
7 ПЕРЕИЗДАНИЕ. Май 2019 г.
Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.
В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге "Межгосударственные стандарты"
1 Область применения
1.1 Настоящий стандарт устанавливает спектрофотометрический метод определения спектра поглощения химического вещества в ультрафиолетовой и видимой областях.
1.2 Спектрофотометрический метод основан на национальных и согласованных международных стандартах, которые применяются для определения спектров поглощения.
2 Термины и определения
В настоящем стандарте применен следующий термин с соответствующим определением:
3 Общие сведения
3.1 Основной целью определения спектра поглощения химического вещества в УФ и видимой областях (UV-VIS) является установление длин волн, при которых вещество может подвергаться фотохимической деградации в окружающей среде. Поскольку фотохимическая деградация может происходить как в атмосфере, так и в водной среде, то спектры, соответствующие данным средам, будут информативными для дальнейшего изучения устойчивости вещества.
4 Принцип метода
В данном методе используется двухлучевой спектрофотометр, который регистрирует только разницу поглощения между контрольным и исследуемым растворами с получением спектра исследуемого химического вещества.
5 Достоверность испытания
5.1 Определять воспроизводимость и чувствительность не требуется. Вместо этого необходимо оценить точность системы при определении спектров стандартного вещества для подтверждения соответствующей воспроизводимости и чувствительности.
5.2 При отсутствии возможности использовать двухлучевой спектрофотометр поглощение исследуемого раствора определяют на однолучевом спектрофотометре с интервалами 5 нм в полном диапазоне длин волн и с интервалами 1 нм в диапазонах длин волн, в которых были зарегистрированы максимумы поглощения. Определение длины волны и поглощения следует проводить так же, как на двухлучевом спектрофотометре.
6 Стандартные вещества
6.1 Использование стандартных веществ во всех случаях при испытании нового вещества не требуется. Использование стандартных веществ необходимо для периодической калибровки метода и возможности сопоставления результатов в случае применения других методов.
6.2 Показатели поглощения стандартных веществ, пригодных для калибровки системы, указаны в таблицах 1-3.
|
|
|
|
|
3,56 | 3,63 | 3,16 | 3,50 | |
, нм | 235 | 257 | 313 | 350 |
Таблица 2 - Показатели поглощения раствора флуорантена в метаноле [2]
|
|
|
|
|
|
4,75 | 4,18 | 4,73 | 3,91 | 3,92 | |
, нм | 237 | 236 | 288 | 339 | 357 |
Таблица 3 - Показатели поглощения раствора 4-нитрофенола в метаноле [2]
|
|
|
3,88 | 4,04 | |
, нм | 288 | 311 |
Дополнительная информация о стандартных веществах представлена в [3].
7 Процедура испытания
7.1 Приготовление исследуемого раствора
7.1.1 Для приготовления исследуемого раствора используют точную навеску наиболее чистой доступной формы исследуемого вещества. Должны быть известны молекулярная и структурная формулы исследуемого вещества. Концентрация исследуемого раствора должна обеспечивать наличие не менее одного максимума поглощения в пределах от 0,5 до 1,5 единиц.
7.1.2 Поглощение исследуемого вещества также зависит от его конкретной химической формы. Вещество может существовать в различных формах в зависимости от кислотности среды (кислой, щелочной или нейтральной). Следовательно, необходимо снятие спектров во всех трех случаях, когда это возможно с учетом растворимости и концентрации вещества. Если получение необходимых концентраций в любой из водных сред невозможно, то используют подходящий органический растворитель (например, метанол).
7.1.3 Кислая среда должна иметь уровень рН ниже 2, а основная среда - рН не менее 10. В качестве растворителя для приготовления нейтрального, кислого и основного растворов исследуемого вещества используют дистиллированную воду, прозрачную для ультрафиолетового света с длиной волны ниже 200 нм. При использовании метанола кислые или щелочные растворы исследуемого вещества готовят, добавляя в исходный раствор 10%-ные по объему водные растворы соляной кислоты или гидроксида натрия ([HCI], [NaOH] = 1 моль/л).
7.1.4 Теоретически все химические вещества, за исключением исследуемого вещества, подвергаются облучению в обеих кюветах спектрофотометра и, следовательно, не будут появляться в регистрируемом спектре. На практике за счет того, что обычно растворитель находится в избытке, имеется пороговое значение длины волны, ниже которой регистрация спектра исследуемого химического вещества становится невозможной. Такая длина волны должна быть свойством растворителя или используемой среды. В общем случае использование дистиллированной воды пригодно для испытаний с длиной волны от 200 нм (растворенные ионы часто способствуют повышению указанного предела), метанола - от 210 нм, гексана - от 210 нм, ацетонитрила - от 215 нм и дихлорметана - от 235 нм.
7.2 Приготовление контрольного раствора
Контрольный раствор готовят аналогично исследуемому раствору, но без добавления исследуемого вещества. Спектр поглощения контрольного раствора должен быть зарегистрирован таким же способом, что и спектр исследуемого раствора, и предпочтительно с использованием того же градуировочного графика. Данный базовый спектр не должен включать значения, отличающиеся более чем на ±0,05 единиц от номинального нулевого значения.
7.3 Кюветы
Длина оптического пути кювет, как правило, должна находиться в диапазоне от 0,1 до 10 см. Длина кюветы должна быть выбрана таким образом, чтобы обеспечивался, по меньшей мере, один максимум поглощения в диапазоне от 0,5 до 1,5 единицы. Выбор кювет зависит от концентрации и поглощения исследуемого раствора, длина кювет может быть определена на основании закона Ламберта-Бугера-Бера. Кюветы должны быть прозрачными в пределах регистрируемого спектра, и длины оптического пути кювет должны быть известны с точностью, как минимум, 1%. Кюветы должны быть тщательно вымыты (например, для кварцевых кювет используют хромовую кислоту) и несколько раз промыты исследуемым или контрольным раствором.
8 Проведение испытания
Обе кюветы промывают и заполняют контрольным раствором. Прибор устанавливают на сканирование со скоростью, соответствующей разрешению требуемой длины волны и спектру контрольного раствора. Затем кювету для исследуемого раствора промывают и заполняют исследуемым раствором, повторяют сканирование, предпочтительно на том же графике спектра, для отображения базовой линии. Испытание проводят при температуре 25°С.
9 Данные и отчет о проведении испытания
9.1 Обработка результатов
Обозначение величин указано в 3.3.
9.2 Отчет о проведении испытания
9.2.1 Отчет о проведении испытания должен содержать копию каждого из трех зарегистрированных спектров (для трех значений уровня рН). Если невозможно приготовить необходимые растворы в воде или метаноле, то будет получен только один спектр. Спектры должны включать шкалу длин волн, пригодную для прочтения. На каждом спектре должны быть четко указаны условия проведения испытания.
9.2.3 В отчет о проведении испытания необходимо включить описание условий проведения испытания, таких как скорость сканирования, наименование и марка спектрофотометра, ширина расщепления (где это применимо), тип кювет и длина оптического пути кювет, концентрация исследуемого вещества, природа и кислотность растворителя. Также необходимо представить график спектров соответствующих стандартных веществ для оценки точности определения поглощения и длины волны (см. раздел 5).
Приложение ДА
(справочное)
Сопоставление структуры настоящего стандарта со структурой примененного в нем международного документа
|
|
Структура международного документа | Структура межгосударственного стандарта |
Раздел 1 | 1 |
Раздел 2 | - |
А | 2 |
| 3 |
| 4 |
| 5 |
| 6 |
В | 7 |
| 8 |
Раздел 3 | 9 |
Раздел 4 | Библиография |
Библиография
|
|
[1] | J.A.A.Ketelaar, Photoelectric Spectrometry Group Bulletin 8, Cambridge (1955) (Фотоэлектрическая спектрометрия) |
[2] | Chemical Rubber Company, Atlas of Spectral Data, Cliffland, Ohio. |
[3] | G.Milazzo, S.Caroli, M.Palumbo-Doretti, N.Violante, Anal. Chem., 49, 711 (1977) (Аналитическая химия) |
|
|
УДК 658.382.3:006.354 | МКС 13.020.01 |
| |
Ключевые слова: химическая продукция, окружающая среда, спектр поглощения |