ГОСТ Р 56353-2022 Грунты. Методы лабораторного определения динамических свойств дисперсных грунтов.
ГОСТ Р 56353-2022
НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ
ГРУНТЫ
Методы лабораторного определения динамических свойств дисперсных грунтов
Soils. Laboratory methods for determination of dispersed soil dynamic properties
ОКС 93.020
Дата введения 2022-05-01
Предисловие
1 РАЗРАБОТАН Обществом с ограниченной ответственностью "Геологический научно-методический центр МГУ имени М.В.Ломоносова" (ООО "Геоцентр МГУ"), Ассоциацией "Инженерные изыскания в строительстве" - Общероссийским отраслевым объединением работодателей ("АИИС") при участии Геологического факультета Московского государственного университета имени М.В.Ломоносова (МГУ имени М.В.Ломоносова)
2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"
3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 14 апреля 2022 г. N 210-ст
4 В настоящем стандарте реализованы нормы Федерального закона от 30 декабря 2009 г. N 384-ФЗ "Технический регламент о безопасности зданий и сооружений"
5 ВЗАМЕН ГОСТ Р 56353-2015
Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. N 162-ФЗ "О стандартизации в Российской Федерации". Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе "Национальные стандарты", а официальный текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.rst.gov.ru)
Введение
Настоящий стандарт разработан взамен ГОСТ Р 56353-2015 с учетом требований федеральных законов от 27 декабря 2002 г. N 184-ФЗ "О техническом регулировании" [1] и от 30 декабря 2009 г. N 384-ФЗ "Технический регламент о безопасности зданий и сооружений" [2].
Настоящий стандарт разработан авторским коллективом под руководством доктора геолого-минералогических наук, профессора Е.А.Вознесенского. В основу настоящего стандарта положен опыт применения ГОСТ Р 56353-2015 и многолетний опыт авторов в области экспериментальных исследований динамических свойств грунтов, а также разработки и совершенствования методик динамических испытаний.
1 Область применения
Настоящий стандарт устанавливает методы лабораторного определения динамических свойств дисперсных грунтов (за исключением крупнообломочных) при инженерно-геологических изысканиях для строительства.
2 Нормативные ссылки
В настоящем стандарте использованы нормативные ссылки на следующие документы:
ГОСТ 5180 Грунты. Методы лабораторного определения физических характеристик
ГОСТ 12248.3-2020 Грунты. Определение характеристик прочности и деформируемости методом трехосного сжатия
ГОСТ 12248.4 Грунты. Определение характеристик деформируемости методом компрессионного сжатия
ГОСТ 12536 Грунты. Методы лабораторного определения гранулометрического (зернового) и микроагрегатного состава
ГОСТ 22733 Грунты. Метод лабораторного определения максимальной плотности
ГОСТ 25100 Грунты. Классификация
ГОСТ 30416 Грунты. Лабораторные испытания. Общие положения
СП 22.13330.2016 "СНиП 2.02.01-83* Основания зданий и сооружений"
СП 26.13330.2012 "СНиП 2.02.05-87 Фундаменты машин с динамическими нагрузками"
СП 38.13330.2018 "СНиП 2.06.04-82* Нагрузки и воздействия на гидротехнические сооружения (волновые, ледовые и от судов)"
Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов и сводов правил в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если заменен ссылочный документ, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого документа с учетом всех внесенных в данную версию изменений. Если заменен ссылочный документ, на который дана датированная ссылка, то рекомендуется использовать версию этого документа с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный документ, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку. Сведения о действии сводов правил целесообразно проверить в Федеральном информационном фонде технических регламентов и стандартов.
3 Термины и определения
В настоящем стандарте применены термины по ГОСТ 12248.3, ГОСТ 25100 и ГОСТ 30416, а также следующие термины с соответствующими определениями:
3.1 виброползучесть: Накопление деформаций в дисперсных грунтах при длительных динамических нагрузках вследствие ослабления взаимодействия между частицами и их взаимной переупаковки.
3.2 дилатансия (положительная или отрицательная): Изменение объема некоторых грунтов при сдвиге.
Примечание - Отрицательная дилатансия также именуется контракцией.
3.3 динамическая дилатансия: Механизм деформирования и разрушения несвязных грунтов при динамических нагрузках, заключающийся в изменении их объема в связи с переупаковкой частиц при их взаимном смещении (уплотнении или разуплотнении) либо в развитии избыточного порового давления (положительного или отрицательного) в условиях водонасыщенной закрытой системы.
3.4 динамический модуль деформации: Приращение напряжения в условиях динамического нагружения, вызывающее единичное приращение относительной линейной деформации грунта и рассчитываемое как отношение приращения напряжений к возникшему приращению деформаций грунта в заданном диапазоне последних.
3.5 динамическая нагрузка: Переменная нагрузка, изменяющаяся во времени быстрее, чем рассеиваются вызванные ею в грунте напряжения.
3.6 динамическая неустойчивость грунтов: Увеличение деформируемости и снижение прочности при динамическом нагружении по сравнению со статическими условиями.
Примечание - Механизм проявления динамической неустойчивости рекомендуется обозначать, как указано в приложении А.
3.7 динамические свойства грунтов: Группа физико-механических свойств грунтов, характеризующих их реакцию на динамические нагрузки, в т.ч. свойства грунтов как среды распространения колебаний (тиксотропные, плывунные, упругие, демпфирующие, фильтрующие и др.).
3.8 динамическое разжижение: Переход водонасыщенных дисперсных грунтов в текучее состояние в результате разрушения структурных связей при динамических воздействиях.
3.9 квазитиксотропные грунты: Связные дисперсные грунты с преимущественно коагуляционными структурами, проявляющие при динамическом нагружении обратимое разупрочнение, следствием которого может быть как ускоренное накопление деформаций, так и разжижение чувствительных разностей.
Примечание - При этом после прекращения динамического воздействия прочность этих грунтов восстанавливается во времени до значений, превышающих либо не достигающих ее начального уровня.
3.10 модуль деформации: Приращение механического напряжения, вызывающее единичное приращение относительной деформации грунта соответствующего вида (сдвига, линейного или объемного сжатия) и рассчитываемое как отношение приращения приложенных напряжений к возникшему при этом общему приращению деформаций грунта.
3.11 плывунность: Способность дилатантно-тиксотропных и некоторых квазитиксотропных грунтов к быстрому разжижению при небольшой интенсивности динамической нагрузки, связанная с особенностями их структуры.
3.12 разжижение грунта: Переход водонасыщенного дисперсного грунта в текучее состояние под внешним воздействием.
3.13 тиксотропия: Физико-химическое явление, выражающееся в полном или частичном разрушении структурных связей коагуляционной дисперсной системы под действием динамической нагрузки и последующем самопроизвольном их восстановлении в покое, протекающее при неизменных температуре и влажности.
3.14 циклическая подвижность грунта: Прогрессирующее снижение прочности грунта под действием динамической нагрузки при неизменной пористости, положительном избыточном поровом давлении в части каждого цикла воздействия и пониженном внутреннем трении в фазе разгрузки.
3.15 удельная рассеянная энергия: Часть общей работы, совершенной над единицей объема грунта в ходе динамического нагружения и соответствующая изменению его внутренней энергии (определяется на момент достижения определенной деформации грунта - обычно 5% в условиях динамического испытания).
4 Обозначения
В настоящем стандарте применены следующие обозначения:
a - эмпирический параметр;
b - эмпирический параметр;
B - параметр порового давления Скемптона;
C - скорость распространения сейсмической волны, м/с;
CSR - приведенные циклические сдвиговые напряжения;
D - коэффициент поглощения (или демпфирования);
e - коэффициент пористости грунта;
E - модуль деформации грунта, кПа;
G - динамический модуль сдвига грунта, кПа;
h - высота образца, м;
H - мощность слоя грунта, м;
M - магнитуда землетрясения;
n - число зарегистрированных i-х значений;
p’ - среднее эффективное напряжение, кПа;
q - максимальное касательное напряжение, кПа;
R - расстояние до сейсмического источника, км;
S - уклон поверхности, в процентах;
t - время, с;
u - поровое давление, кПа;
V - скорость смещения частиц в волне данного типа, м/с;
Y - отношение высоты откоса к расстоянию от его подошвы до рассматриваемой точки, в процентах;
z - глубина, м;
5 Общие положения
5.1 Настоящий стандарт устанавливает следующие методы лабораторных испытаний дисперсных грунтов для определения их динамических свойств:
- динамическое трехосное сжатие;
- малоамплитудные динамические испытания методом резонансной колонки;
- крутильный сдвиг;
- динамический простой сдвиг.
5.2 Общие требования к лабораторным испытаниям грунтов, оборудованию и приборам, лабораторным помещениям, способы изготовления образцов для испытаний приведены в ГОСТ 30416.
Примечание - По специальному заданию допускается применять другие методы испытаний и конструкции приборов, обеспечивающие моделирование процесса динамического нагружения грунта.
5.3 Для испытуемых грунтов должны быть определены физические характеристики по ГОСТ 5180: влажность, плотность, плотность частиц, влажность на границах текучести и раскатывания, гранулометрический состав песков, а в необходимых случаях - и глинистых грунтов по ГОСТ 12536, а также вычислены плотность сухого грунта, коэффициент пористости, коэффициент водонасыщения, число пластичности и показатель текучести.
Дополнительные необходимые характеристики грунтов приведены в описаниях отдельных методов испытаний.
5.4 Для обозначения механизма проявления динамической неустойчивости грунтов рекомендуется пользоваться их классификацией, приведенной в приложении А.
5.5 Для предварительной оценки необходимости проведения испытаний песчаных грунтов на разжижаемость рекомендуется пользоваться их классификацией по разжижаемости, приведенной в приложении А.
5.6 В процессе испытаний грунтов ведут протоколы по формам, приведенным в приложении Б.
6 Метод динамического трехосного сжатия
6.1 Сущность метода
6.1.1 Испытания песчаных, глинистых, органоминеральных и органических грунтов методом динамического трехосного сжатия проводят для определения:
6.1.3 Есть два основных варианта динамических трехосных испытаний:
а) с контролем напряжений;
б) с контролем деформаций.
Допускается использовать оба варианта испытаний, но вариант а) предпочтительнее, поскольку позволяет задавать и поддерживать на заданном уровне (или изменять по заданной программе) параметры динамического воздействия в течение эксперимента, а поровое давление и осевая деформация образца при этом измеряются в функции числа циклов нагружения.
6.1.4 Динамические трехосные испытания дисперсных грунтов следует проводить по консолидированно-недренированной схеме с измерением порового давления. В обоснованных случаях (моделирование динамического воздействия на грунты, находящиеся в нестабилизированном состоянии под действием как природной, так и дополнительной нагрузки от сооружения) допускается использовать неконсолидированно-недренированную схему. Использование консолидированно-дренированной схемы в режиме динамического трехосного сжатия не допускается в связи с неравномерностью оттока поровой влаги из разных сечений образца из-за высоких скоростей деформации в динамическом режиме нагружения.
6.1.5 Для испытаний используют образцы грунта ненарушенного сложения с природной влажностью или образцы нарушенного сложения с заданными значениями плотности и влажности. Образцы должны иметь форму цилиндра диаметром не менее 38 мм (предпочтительнее не менее 50 мм) и с отношением высоты к диаметру от 2:1 до 2,5:1.
6.2 Оборудование и приборы
6.2.1 Общие требования к составу, конструкции, измерительным устройствам и тарировке установок для испытания грунтов методом динамического трехосного сжатия в целом соответствуют требованиям ГОСТ 12248.3. Погрешности средств измерений (усилий, давлений, перемещений) для всех измерительных устройств должны соответствовать ГОСТ 30416. Датчики перемещений должны позволять измерять деформации образца с точностью ±0,02% базы измерения (высоты или диаметра образца).
6.2.2 Установки динамического трехосного сжатия должны иметь системы динамического нагружения, калиброванные в установленном порядке. Система динамического нагружения установки должна обеспечивать создание и контроль заданной амплитуды гармонически изменяющихся напряжений в диапазоне от 1 до не менее чем 100 кПа в течение испытания. Дрейф осевой нагрузки (отклонение осевого напряжения от расчетного синусоидального сигнала) не должен превышать 5%. В дополнение к этому система может создавать и другие, в т.ч. сложные, формы волны нагружения. Структурная схема такого прибора приведена в приложении В. При необходимости калибровку системы нагружения на нужную амплитуду динамического нагружения проводят перед опытом, установив вместо образца металлический стержень.
6.2.3 Испытательная установка должна иметь в своем составе автоматическую систему регистрации данных и управления экспериментом на базе персонального компьютера или сервера с учетом быстротечности всех процессов при динамическом нагружении грунта. Эта система должна иметь техническую возможность регистрации деформации образца, порового давления и осевого усилия не менее 20 раз за каждый цикл динамического нагружения при выбранной частоте воздействия.
6.2.4 Измерение порового давления проводят по одному или обоим торцам образца либо в центральной части образца при использовании средств локальных измерений. Для измерения осевых деформаций образца используют внешние (по отношению к камере) или внутренние датчики перемещений, имеющие, как и датчики давления, обратную связь с системой нагружения, что обеспечивает автоматизированный режим работы всей установки. При необходимости контроля деформаций менее 0,01% следует использовать датчики локального измерения осевых и радиальных деформаций образца, устанавливающиеся непосредственно на него внутри камеры прибора.
6.3 Подготовка к испытанию
6.3.1 Подготовку образца к испытанию проводят в целом в соответствии с требованиями ГОСТ 30416 и ГОСТ 12248.3. Образцы связных грунтов ненарушенного сложения также допускается вырезать из монолита глинистого грунта с помощью специальных ножей и струн на поворотном шаблоне. Для выравнивания торцов используют разъемные формы, позволяющие ровно подрезать образец жестким ножом.
6.3.2 Подготовку водонасыщенных образцов песчаных грунтов из проб нарушенного сложения ведут непосредственно на основании камеры способами осаждения в воде, влажного трамбования или сухой послойной отсыпки воздушно-сухого песка, которые позволяют исключить значительные вариации пористости по высоте образца и обеспечить их практическую идентичность в серии испытаний. При этом осаждение в воде пригодно лишь для чистых однородных песков, поскольку для песков со значительным содержанием тонких частиц возможна их сегрегация в столбе жидкости.
6.3.3 Образцы во всех случаях формируют в цилиндрической разъемной форме-шаблоне, установленной непосредственно на пьедестале камеры прибора трехосного сжатия, с растянутой на ее внутренней поверхности латексной мембраной. Для формирования образцов строго цилиндрической формы между внутренней стенкой формы и мембраной с помощью вакуумного насоса создается разрежение, обеспечивающее полное прилегание последней по внутренней поверхности шаблона. Массу грунта контролируют с точностью до 0,01 г.
6.3.4 Формирование образцов методом сухой послойной отсыпки ведут через воронку с выходным отверстием диаметром 5 мм с постоянной высоты около 20 мм над поверхностью формируемого образца. Постукиванием резиновым или пластиковым молотком по основанию камеры достигают более плотного сложения песка. После установки штампа и закрепления на нем верхнего конца мембраны, но до заполнения камеры прибора водой, к образцам для повышения эффективных напряжений и сохранения их однородности через верхнюю дренажную линию прикладывают разрежение, значение которого не должно превышать среднее эффективное напряжение при консолидации. Нижняя дренажная линия остается перекрытой. После этого герметически перекрывают верхнюю дренажную линию, удаляют разъемную форму-шаблон и (предпочтительно цифровым штангенциркулем) определяют высоту и диаметр образца с точностью 0,01 мм. Диаметр измеряют в верхней, средней и нижней частях образца не менее шести раз. В дальнейших расчетах используют полученное среднее арифметическое значение диаметра образца.
6.3.5 Подготовку образцов методом послойного осаждения в кипяченой и вакуумированной воде ведут из предварительно прокипяченной в двух колбах в течение 1 ч взвеси песка в воде, минуя воздушную среду. Это исключает образование пузырьков воздуха в формируемом образце и обеспечивает надежность последующего измерения порового давления. Для этого колбу, заполненную доверху водой, затыкают пробкой со стеклянной трубочкой диаметром 3-4 мм. Затем колбу переворачивают вертикально, а кончик трубочки опускают в воду. При этом песок постепенно оседает из колбы через трубочку в форму, минуя воздушную среду. Эквивалентный объем воды при этом вытесняется из формы в колбу. Перемещая понемногу колбу в горизонтальной плоскости, добиваются равномерной укладки песка по площади обоймы. Постукиванием легким пластиковым или резиновым молотком по основанию камеры можно получить более плотное сложение песка.
Установку штампа и сборку камеры трехосного сжатия проводят аналогично способу, описанному в 6.3.4.
6.3.6 Подготовку образцов методом влажного трамбования ведут путем послойной укладки и трамбования влажного песка из смеси, приготовленной при влажности 6%-7% и выдержанной для выравнивания содержания влаги во всем ее объеме в течение не менее чем 12 ч в среде с относительной влажностью воздуха около 100%. Образец формируют в такой же цилиндрической разъемной форме-шаблоне, установленной непосредственно на пьедестале камеры прибора трехосного сжатия, в пять-шесть слоев из соответствующего числа примерно одинаковых навесок влажного грунта из расчета получения образца с заданной пористостью. Интенсивность трамбования постепенно увеличивают снизу вверх для получения однородного сложения по высоте. Следует предварительно рассчитывать и контролировать в процессе укладки требуемую высоту образца после формирования каждого последующего слоя. Этот метод наиболее целесообразен для формирования образцов неоднородных песков с содержанием частиц мельче 0,05 мм более 15% или частиц крупнее 2 мм более 5% по массе.
Установку штампа и сборку камеры трехосного сжатия проводят аналогично способу, описанному в 6.3.4.
6.3.8 После установки полностью снаряженной камеры с образцом и его водонасыщения все управление испытанием и непрерывную регистрацию данных ведут с персонального компьютера через меню управляющей программы. Начальные установки программы испытания включают в себя:
- ввод исходных данных, необходимых для вычисления напряжений и деформаций в процессе испытания: высота, диаметр и масса образца, плотность частиц грунта; период нагружения; частота считывания показаний каждого датчика;
- ввод условия прекращения эксперимента: значение максимальной осевой деформации, число циклов или длительность нагружения; возможные дополнительные условия остановки испытания в зависимости от использующейся программы управления;
- фиксацию исходных (условно нулевых) показаний всех датчиков.
6.4 Проведение динамического консолидированно-недренированного испытания
6.4.1 Водонасыщение образцов
6.4.1.1 Перед началом проведения испытания проводят водонасыщение образца, что необходимо для контроля порового давления и эффективных напряжений в образце в процессе испытания. Водонасыщение проводят в соответствии с требованиями ГОСТ 12248.3.
6.4.1.2 Степень водонасыщения образцов и отсутствие воздуха в системе измерения порового давления контролируют параметром Скемптона:
Примечание - При испытаниях на виброползучесть возникающее поровое давление ничтожно, и поэтому образцы грунта допускается испытывать как при естественной влажности, так и при полном водонасыщении.
6.4.2 Предварительная консолидация образцов
Горизонтальное напряжение рассчитывают по формуле
При невозможности определения или расчета значения коэффициента бокового давления покоя для нормально уплотненных грунтов допускается принимать:
6.4.2.4 Анизотропная консолидация проводится после завершения изотропного обжатия в соответствии с ГОСТ 12248.3-2020 (пункты 8.2.1-8.2.5). Осевое давление передают ступенями в соответствии с таблицей 1.
Таблица 1 - Ступени нагрузки при анизотропной консолидации
|
|
|
Грунты | Давление в камере , кПа | Ступени вертикального давления , кПа |
Пески гравелистые независимо от плотности, пески крупные и средней крупности плотные. Глины с 0,25 | До 500 | |
Пески средней крупности рыхлые и средней плотности, пески мелкие плотные и средней плотности. Глинистые: супеси и суглинки с 0,5; глины с 0,25< 0,5 | До 300 | |
Пески мелкие рыхлые, пески пылеватые независимо от плотности. Глинистые: супеси, суглинки, глины с 0,5 | До 200 | |
Органоминеральные и органические грунты | До 100 | |
Примечания
1 При значениях давления в камере, больших указанных в настоящей таблице, ступени давления принимают равными 10% конечного давления.
2 Вертикальное давление прикладывают через 15 мин после достижения заданного давления в камере.
3 При конечном значении бокового напряжения, меньшем указанных в настоящей таблице, это напряжение создается в одну ступень.
4 При консолидации в камере трехосного сжатия с раздельным созданием напряжений на боковой поверхности и торцах образца [типа Б - ГОСТ 12248.3-2020 (приложение Б)] ступени вертикального давления следует задавать равными сумме ступеней давления в камере и вертикального давления, указанных в настоящей таблице.
|
6.4.2.6 Объемная деформация при консолидации контролируется по изменению отжатой жидкости. Пересчет текущего коэффициента пористости грунта и размеров образца ведется автоматически. Данные консолидации на момент ее окончания заносят в протокол испытаний (см. приложение Б). Консолидацию ведут до полного завершения фильтрационных процессов. Для водонасыщенных грунтов за критерий окончания фильтрационной консолидации образца может быть также принято условие изменения объемной деформации не более 0,3% за последние 4 ч.
6.4.3 Проведение динамического нагружения
6.4.3.1 После завершения консолидации перекрывают дренаж и проводят испытания образца грунта с заданными параметрами динамической нагрузки. Расчет динамических напряжений, если они не заданы каким-либо иным способом, приведен в приложении Г.
6.4.3.2 При исследовании виброползучести в грунтах, подверженных динамическим воздействиям от внешних источников уже в процессе возведения сооружения, допускается прикладывать расчетные динамические напряжения одновременно с вертикальным кинематическим или статическим нагружением в соответствии с ГОСТ 12248.3 после завершения консолидации образца при природном давлении.
6.4.3.3 При расчете амплитуды динамических напряжений и длительности испытания следует учитывать преобладающую частоту воздействия. При оценке сейсмической разжижаемости грунтов для обеспечения надежности измерения порового давления в ходе опыта рекомендуется использовать частоту динамического нагружения не более 0,5 Гц. При испытании на виброползучесть частота нагружения должна быть выше 0,01 Гц. Во всех случаях частоты нагружения ниже 0,01 Гц ввиду возможности проявления реологических и тиксотропных эффектов применять без обоснования не допускается.
Примечание - Надежность измерения порового давления снижается с ростом частоты нагружения.
6.4.3.4 Число циклов нагружения при оценке сейсмической разжижаемости следует определять в соответствии с магнитудой ожидаемого землетрясения (приложение Г). Число циклов нагружения при испытании на виброползучесть должно составлять не менее 500.
6.4.3.5 Динамическое нагружение в зависимости от задачи испытания ведут либо до разрушения (видимое разрушение образца или достижение осевой деформации более 10%), либо до достижения заданной программой эксперимента осевой деформации образца или определенного числа циклов воздействия (см. приложение Г). Главные напряжения, поровое давление и осевая деформация должны регистрироваться автоматически не менее 20 раз за один цикл нагружения. При испытании песков на разжижаемость критерием остановки опыта служит достижение 100%-ного PPR либо завершение расчетного числа циклов воздействия.
6.4.3.6 При необходимости оценки осадки поверхности массива в результате разжижения грунта соответствующее испытание перед разгрузкой завершается реконсолидацией. В этом случае по окончании циклического воздействия к образцу для обеспечения равномерного дренирования через канал(ы) дренирования прикладывают противодавление, эквивалентное возникшему при динамическом нагружении поровому давлению. Отток воды следует осуществлять при открытом дренаже по мере плавного снижения противодавления. Необходимо зафиксировать изменение объема грунта при реконсолидации по объему отжатой жидкости.
6.4.3.7 По окончании испытания образец грунта разгружают, сбрасывают давление в камере и сливают рабочую жидкость.
6.4.3.8 Образец грунта извлекают из камеры и отбирают из него пробы для контрольного определения влажности. Все результаты испытания заносят в протокол (см. приложение Б).
6.5 Проведение неконсолидированно-недренированного динамического испытания
Испытание проводят при постоянно закрытом дренаже в соответствии с 6.4.1 и 6.4.3, минуя стадию предварительной консолидации.
6.6 Обработка результатов испытаний
6.6.1 Для обработки результатов используют файлы данных, созданные программой испытаний. Расчет напряжений и деформаций следует проводить в соответствии с положениями ГОСТ 12248.3 в части обработки результатов трехосного сжатия, при этом соответствующие операции могут также проводиться системой в автоматическом режиме при формировании файлов данных.
Полная версия документа доступна с 20.00 до 24.00 по московскому времени.
Для получения доступа к полной версии без ограничений вы можете выбрать подходящий тариф или активировать демо-доступ.