Руководящий документ РД 52.10.243-92 Руководство по химическому анализу морских вод.
РД 52.10.243-92
РУКОВОДЯЩИЙ ДОКУМЕНТ
РУКОВОДСТВО ПО ХИМИЧЕСКОМУ АНАЛИЗУ МОРСКИХ ВОД
Дата введения 1993-07-01
ИНФОРМАЦИОННЫЕ ДАННЫЕ
1. УТВЕРЖДЕН Комитетом по гидрометеорологии и мониторингу окружающей среды. Решение от 28 апреля 1992 г.
2. РАЗРАБОТЧИКИ С.Г.Орадовский, доктор хим. наук, профессор; Г.Г.Лятиев, канд. хим. наук; И.С.Матвеева, канд. хим. наук; Е.С.Лебедева, канд. хим. наук; А.К.Прокофьев, канд. хим. наук; И.Г.Орлова, канд. хим. наук; С.М.Черняк, канд. хим. наук; И.М.Кузнецова, В.В.Георгиевский, А.Н.Кузьмичев, В.В.Сапожников, доктор геогр. наук; Е.П.Кириллова, канд. геогр. наук, В.А.Михайлов, канд. хим. наук; Ф.А.Дмитриев, канд. хим. наук; А.В.Игнатченко, Т.В.Копылова, Т.В.Степанченко, Л.Н.Георгиевская, Е.А.Веселова
3. СОГЛАСУЮЩИЕ ОРГАНИЗАЦИИ Управление мониторинга окружающей среды Роскомгидромета
4. ЗАРЕГИСТРИРОВАН В базовой организации по стандартизации и метрологии (ГОИН) за N 52.10.243-92 от 8 мая 1992 г.
5. ВВЕДЕН ВПЕРВЫЕ
Настоящий руководящий документ (РД) распространяется на морские воды и устанавливает порядок проведения их химического анализа.
Руководство является обязательным для работников химических лабораторий Управлений по гидрометеорологии и мониторингу окружающей среды, научно-исследовательских судов и научно-исследовательских учреждений Росгидромета, других организаций Министерства экологии и природных ресурсов Российской Федерации, которые ведут гидрохимические наблюдения и исследования в морях России и Мировом океане и осуществляют мониторинг загрязнения морской среды.
ПРЕДИСЛОВИЕ
"Руководство по химическому анализу морских вод" является основным методическим пособием для работников химлабораторий Управлений по гидрометеорологии и мониторингу окружающей среды, научно-исследовательских судов и научно-исследовательских учреждений Роскомгидромета, других организаций Министерства экологии и природных ресурсов Российской Федерации, проводящих гидрохимические наблюдения и исследования, мониторинг загрязнения морской среды в морях России и Мировом океане. В отличие от 1-го издания*, настоящее Руководство полностью переработано в соответствии с требованиями Руководящего документа Госкомгидромета РД 52.24-127-87**. В Руководство включены в большинстве случаев метрологически аттестованные методики химического анализа морских вод, однако сохранены и некоторые неаттестованные методики, поскольку полученные с их применением данные представляют большой научный интерес. Второе издание дополнено рядом новых методик, прежде всего, касающихся определения загрязняющих веществ в морской воде: нитро-, хлор- и алкилфенолов, ксантогенатов и дитиофосфатов, гербицидов симм-триазинового ряда и группы 2,4-Д, анионных, катионных и неионогенных синтетических поверхностно-активных веществ, а также содержит аналитическую систему идентификации нефтяных разливов в море.
________________
* Руководство по методам химического анализа морских вод. - Л.: Гидрометеоиздат, 1977.
** Требования к разработке, изложению, метрологической аттестации, оформлению, утверждению и внедрению методик химического анализа объектов природной среды. Методические указания.-.М.: Гидрометеоиздат, 1986.
В число разработчиков настоящего РД вошли составители тех разделов 1-го издания, которые не претерпели существенных изменений.
ВВЕДЕНИЕ
Со времени выхода в свет 1-го издания настоящего Руководства прошло 15 лет. За эти годы Государственным океанографическим институтом были разработаны и изданы еще несколько методических пособий по химическому анализу морских вод и донных отложений*, позволивших создать современную химико-аналитическую базу для Общегосударственной службы наблюдений за химическим состоянием морской среды (ОГСН) и научно-исследовательских учреждений гидрометеослужб России и стран СНГ, которые занимаются морскими гидрохимическими исследованиями.
________________
* Методические указания по определению загрязняющих веществ в морских донных отложениях, N 43. - М.: Гидрометеоиздат, 1979; Методические указания по определению загрязняющих веществ в морской воде на фоновом уровне, N 45. - М.: Гидрометеоиздат, 1982; Методические указания по химическому анализу распресненных вод морских устьевых областей рек и эпиконтинентальных морей. N 46. - М.: Гидрометеоиздат, 1984, и др.
Новое издание Руководства призвано повысить качество и информативность морских гидрохимических данных, приблизить применяемые в нашей стране методы анализа морских вод к мировому уровню. Качество данных о химическом состоянии морской среды во многом зависит от метрологического обеспечения средств измерений и методик выполнения измерений (МВИ). Разработанные в 80-х годах Госстандартом государственные стандарты (ГОСТ), регламентирующие основные требования к МВИ, не учитывали специфику анализа проб объектов природной, в частности, морской среды, что вызвало необходимость разработки соответствующих отраслевым стандартам (ОСТ) Руководящих документов (РД) в рамках Госкомгидромета, Минводхоза, других министерств и ведомств, осуществляющих наблюдения и контроль за состоянием окружающей природной среды. Они определяли требования к метрологическим исследованиям и аттестации МВИ, что, несомненно, способствовало повышению качества получаемой информации.
При разработке настоящего Руководства соблюдались требования Руководящего документа Госкомгидромета 52.24-127-87. Вместе с тем следует подчеркнуть, что метрологические исследования и аттестация касаются только МВИ, т.е. конечной стадии химического анализа проб. Стадии же пробоотбора и пробоподготовки метрологически не исследуются и не аттестуются, так как при современном уровне метрологического обеспечения технических средств и приемов отбора, обработки, подготовки к анализу проб объектов морской и других природных сред унифицировать эти работы не представляется возможным. Между тем именно эти стадии химического анализа могут обусловливать наибольшие погрешности в результатах проведения химического мониторинга морской среды. Недостаточно корректное выполнение этих стадий анализа приводит к получению недостоверной информации, хотя затраты сил и средств на ее сбор являются, как правило, весьма значительными.
В последние годы эти проблемы оказались в центре внимания Межправительственной океанографической комиссии (МОК) ЮНЕСКО и Программы ООН по окружающей среде (ЮНЕП), которые издали ряд соответствующих руководств, рекомендованных для выполнения международных программ мониторинга загрязнения морской среды. Разумеется, не все рекомендации этих руководств можно осуществить по чисто техническим причинам. Тем не менее при составлении отдельных разделов настоящего Руководства были учтены многие рекомендации методического пособия МОК ЮНЕСКО* и некоторых других документов.
________________
* Chemical methods for use in marine environmental monitoring. IOC Manuals and guides, N 12. - UNESCO, 1983.
Для повышения информативности химического мониторинга морской среды во 2-е издание были включены новые методики определения специфических загрязняющих веществ в морской воде: нитро-, хлор- и алкилфенолов, анионных, катионных и неионогенных СПАВ, ксантогенатов и дитиофосфатов, гербицидов симм-триазинового ряда и группы 2, 4-Д, общей растворенной ртути и ряда других токсичных металлов, причем все эти методики метрологически аттестованы. Были сохранены и некоторые неаттестованные методики, имеющие большое значение для информативности гидрохимических исследований океанов и морей. Метрологическая аттестация последних в настоящее время невозможна в связи с техническими трудностями. Следует также отметить, что отдельные методики, входящие в 1-е издание Руководства и не вошедшие во 2-е издание (например, колориметрические - по определению фенолов и детергентов, спектрографическая - по определению тяжелых металлов, газохроматографическая - по определению фосфорорганических пестицидов) могут применяться в практике мониторинга для полуколичественных оценок состояния загрязнения морских вод. Вместе с тем, во 2-е издание включены некоторые методики (определение хлорированных углеводородов с применением капиллярной газожидкостной хроматографии, идентификация нефтяных разливов в море с применением спектрофлуорометрии, жидкостной хроматографии и капиллярной хроматографии), которые предназначены в основном для тонких гидрохимических исследований, а не для сетевых работ.
СОЛЕНОСТЬ
Соленостью морской воды (S ‰) называют выраженную в граммах суммарную массу всех твердых растворенных веществ, содержащихся в 1 кг морской воды, при условии, что все твердые вещества высушены до постоянной массы при 480 °С, органические соединения полностью минерализованы, бромиды и иодиды заменены эквивалентной массой хлоридов, а карбонаты превращены в окислы. Следовательно, морская вода в действительности содержит немного больше солей по сравнению с определенными таким образом значениями солености.
Соленость в океанографии является одной из основных характеристик водных масс, распределения морских организмов, элементов морских течений и т.д. Особую роль она играет в формировании биологической продуктивности морей и океанов, так как многие организмы очень восприимчивы к незначительным ее изменениям.
Соленость может изменяться в весьма значительных пределах, и тем не менее соотношение отдельных компонентов солевого состава морской воды остается практически постоянным, за исключением сильно опресненных районов, прилегающих к устьям рек.
Соленость морской воды определяют обычно аргентометрическим титрованием (по хлорности) и электрометрическим на солемерах [5, 6], а также комплексами "Гидрозонд" [1].
1. Аргентометрический метод*
________________
* Настоящая методика метрологически не аттестована.
Количественно значение хлорности определяют из соотношения
1.1. Сущность метода анализа
Пробу морской воды титруют раствором нитрата серебра, используя в качестве индикатора хромат калия. Поскольку массу солей выражают в граммах, а массу воды - в килограммах, то в результаты объемного химического анализа необходимо вводить поправку на плотность пробы. Для этого в качестве стандарта применяют так называемую нормальную воду, с помощью которой устанавливают титр раствора нитрата серебра. Определив аргентометрическим методом хлорность пробы морской воды, находят затем по таблицам [3] ее соленость, выраженную непосредственно в единицах массы (промилле).
Важно отметить, что этим методом можно определять соленость только таких морских вод, для которых выпускается нормальная вода, т.е. вод открытых частей морей и океанов. Если же массы пробы и нормальной воды отличаются, то в результаты титрования вводят поправки к отсчетам по бюретке. При определении хлорности солоноватых вод Каспийского, Азовского и Аральского морей необходимо использовать таблицы [4].
1.2. Средства измерений, оборудование, материалы и реактивы
Для выполнения анализа применяются:
мешалка магнитная - по ТУ 25-11-834;
бюретки морские, автоматические, калиброванные на 15 мл (рис.1);
Кнудсена - для всех соленостей,
ГОИН - для высокой солености,
ГОИН - для всех соленостей,
ГОИН - для низкой солености;
пипетка автоматическая на 15 мл - по ГОСТ 20292*;
толстостенный химический стакан на 100-150 мл - по ГОСТ 25336;
склянка с притертой пробкой и колпаком на 300 мл для хранения нормальной воды - по ТУ 6-19-6;
капельница для индикатора - по ТУ 25-11-1126;
бутыль из темного стекла (или из светлого, но покрытого снаружи сплошным слоем черной краски) на 5-10 л для хранения азотнокислого серебра - по ТУ 6-19-45;
промывалка на 0,5-1,0 л для дистиллированной воды - по ТУ 64-1-596;
палочка стеклянная для перемешивания титруемой пробы (при отсутствии магнитной мешалки) - по ТУ 25-11-1049;
банка (склянка) с широким горлом для сливания остатков хлористого серебра - по ТУ 6-19-6;
нормальная морская вода соленостью 35 ‰;
серебро азотнокислое, х.ч.- по ГОСТ 1277;
калий хромовокислый, х.ч. - по ГОСТ 4459.
Рис.1. Автоматические бюретки и пипетки ГОИН разных типов
а - бюретка для определения хлорности морской воды с высокой соленостью (крупно дано устройство
для автоматической установки нулевого деления бюретки) с раствором азотнокислого серебра; б - бюретка
для определения солености в широком диапазоне; в - бюретка для определения низкой солености; г - пипетка.
1.3. Отбор проб
Отбор проб морской воды для определения солености производят после взятия проб на рН и растворенный кислород. Пробы отбирают из батометра через резиновую трубку в любые склянки объемом 100-250 мл с хорошо подогнанными резиновыми пробками. Перед взятием пробы склянки 2-3 раза ополаскивают водой из батометра и затем заполняют водой, но не до пробок во избежание выталкивания при изменении температуры. В случае длительного хранения проб необходимо надеть поверх пробок резиновые колпачки.
Допускается хранение проб в течение нескольких недель в склянках, закрытых восковыми пробками (их отмачивают 30-40 с в расплавленном парафине, дают стечь его избытку и высушивают на доске на воздухе), а также в целиком запарафинированных склянках. В таком виде пробы хранятся несколько лет без изменения солености [5].
Определение солености при вскрытии склянок нельзя задерживать более чем на час.
1.4. Подготовка к анализу
1.4.1. Методы приготовления реактивов для проведения анализа
1. Нормальная морская вода служит основным стандартным раствором. Она представляет собой фильтрованную океаническую воду, хлорность которой близка к 19,38 ‰, что соответствует солености 35,00 ‰, т.е. средней солености воды океана, поэтому она и называется нормальной. Этот стандартный раствор со значением хлорности, определенным до третьего знака после запятой включительно, поступает в лаборатории в запаянных стеклянных баллонах емкостью 250 мл*. Перед работой трубочки баллона надрезают напильником и отламывают, а нормальную воду переливают в чистую склянку с пришлифованной пробкой и колпаком.
________________
* В СНГ нормальную воду изготавливает аналитическая лаборатория Института океанологии РАН.
2. Раствор азотнокислого серебра готовят растворением 37,1 г нитрата серебра в дистиллированной воде в мерной колбе на 1 л. Обычно приготовляют 5-10 л раствора и хранят его в темной бутыли. Раствор должен быть совершенно прозрачным. Если же он мутный, то его отстаивают в темном месте до полного просветления и затем сифонируют в чистую бутыль.
3. Раствор индикатора - хромовокислого калия получают растворением 10 г чистой соли в 90 мл дистиллированной воды (10%-ный раствор).
1.4.2. Определение поправки к титру раствора азотнокислого серебра по нормальной воде
Ополоснув предварительно пипетку нормальной водой, переносят 15,0 мл ее в стакан для титрования и после добавления пяти капель индикатора титруют раствором азотнокислого серебра. Во время титрования раствор должен энергично перемешиваться. До появления оранжевых пятен труднорастворимого оранжевого хромата серебра раствор титруют при полностью открытом кране, а затем по каплям. Титрование заканчивают после появления слабой оранжевой окраски осадка, не исчезающей при перемешивании в течение 20 с. Через 15 с записывают отсчет бюретки с точностью до 0,01 деления. Затем титрование проводят вторично при строгом соблюдении тех же условий. Расхождение в отсчетах двух последовательных титрований не должно превышать 0,01 деления, в противном случае выполняют третье титрование. Если же и в этом случае расхождение превышает указанное значение, то необходимо еще раз тщательно перемешать раствор азотнокислого серебра в бутыли и обратить внимание на единообразие в процессе титрования. При вычислении поправки берут среднее арифметическое результатов двух последовательных титрований.
Расчет исправления концентрации раствора азотнокислого серебра проводят по следующим формулам:
Рис.2. Номограмма для приведения концентрации раствора азотнокислого серебра к нормальному значению
1.5. Проведение анализа
К титрованию приступают только тогда, когда температура проб морской воды достигнет комнатной. Для этого их необходимо выдержать в помещении лаборатории не менее часа.
Сполоснув исследуемой водой пипетку, отбирают 15,0 мл пробы и переносят ее в химический стакан. Титрование проводят аналогично определению поправки раствора азотнокислого серебра по нормальной воде. Контрольные титрования нормальной воды следует проводить при изменении условий освещения или температуры воздуха, а также после 15-20 титрований проб.
Оттитрованную пробу с осадком хлористого серебра сливают в склянку для остатков серебра. По ее заполнении отстоявшуюся жидкость декантируют и выбрасывают, а хлористое серебро собирают, высушивают и сдают для регенерации.
Стакан для титрования не обязательно ополаскивать дистиллированной водой от частиц хлористого серебра при правильном титровании, однако если проба перетитрована, то перед внесением в стакан следующей пробы его следует тщательно промыть.
При возникновении каких-либо сомнений в правильности титрования необходимо его повторить.
По окончании работы пипетку заполняют дистиллированной водой, а бюретку - раствором азотнокислого серебра и накрывают последнюю чехлом из плотной черной материи.
1.6. Вычисление результатов анализа
После окончания титрования проб вычисляют хлорность по формуле
2. Электрометрический метод
2.1. Сущность метода анализа
Электрометрический метод определения солености основан на измерении относительной электропроводности морской воды с помощью бесконтактного индукционного солемера, что позволяет ускорить и в принципе увеличить точность ее определения по сравнению с аргентометрическим титрованием.
В СНГ в судовых условиях используется солемер ГМ-65, принцип работы которого основан на изменении электропроводности морской воды в зависимости от количества растворенных в ней солей. Измерения проводят бесконтактным датчиком, состоящим из двух индуктивно связанных трансформаторов с автоматической компенсацией влияния температуры на электропроводность.
Рис.3. Упрощенная схема солемера
Необходимо отметить, что электропроводность изменяется в зависимости от давления не более чем на 2,5-10% начиная с глубины 500 м [1].
2.2. Средства измерений, оборудование, материалы и реактивы
Для выполнения анализа применяются:
солемер ГМ-65;
склянки для нормальной и субнормальной воды емкостью 300 мл с пришлифованными пробками и колпаками (кислотные склянки) - по ТУ 6-19-6;
нормальная вода (см. п.1.4.1.)
2.3. Отбор проб
Пробы морской воды отбираются так же, как указано в п.1.3.
2.4. Подготовка солемера к работе
2.4.1. Солемер вместе с посудой с пробами морской воды и нормальной водой необходимо установить в точке, защищенной от прямого попадания солнечных лучей, теплового влияния приборов и воздействия конвективных потоков воздуха с резкими колебаниями температуры. Температура в помещении не должна изменяться более чем на 1-2 °С. Приступать к измерениям можно только после выравнивания температуры помещения, прибора, проб морской и нормальной вод.
2.4.2. Нормальную воду из запаянных баллонов переливают в кислотные склянки. Очень удобно для текущей работы, с целью уменьшения влияния тепловой инерции морской и нормальной вод на скорость измерений солености, отбирать их в систему, состоящую из двух склянок (рис.4).
Рис.4. Рекомендуемый способ хранения проб морской воды, эталонного раствора нормальной воды
и дистиллированной воды для текущей работы на приборе
1 - колба; 2, 3 - пробки резиновые; 4 - трубка стеклянная; 5 - трубка резиновая;
6 - палочка стеклянная; 7 - трубка стеклянная; 8 - промывалка.
Воду засасывают в датчик (ячейку) солемера через пропущенную сквозь резиновую пробку 3 стеклянную трубку 4 диаметром около 10 мм, доходящую до дна колбы 1 объемом 800-1000 мл. На верхний конец трубки 4 надевают кусок резиновой трубки 5, закрытой стеклянной палочкой 6. Давление в колбе регулируют стеклянной трубкой 7, проходящей сквозь пробку 3 и соединенной с небольшой промывалкой 8, в которой находится такая же вода, что и в колбе, тем самым предотвращая испарение. Эта система особенно удобна в тропических условиях.
2.4.3. Датчик наполняют пробой следующим образом. Надевают левый шланг датчика на трубку 4, после чего открывают его левый кран и закрывают правый. Поворотом ручки насоса наполняют измерительную камеру до появления пробы в сливной камере. Последнюю нельзя заполнять целиком, так как при этом выходит из строя насос. Если хода насоса не хватает для наполнения датчика, то следует закрыть левый и открыть правый краны, вернуть ручку насоса в исходное положение, затем закрыть правый и открыть левый краны и продолжить заполнение датчика пробой. При появлении пробы в сливной камере закрывают левый и открывают правый краны, и излишки пробы сливают.
При заполнении датчика пробой выключатель "питание" должен быть выключен.
Для предотвращения появления пены и пузырьков воздуха в датчике необходимо отрегулировать скорость вращения мешалки путем поворота оси переменного сопротивления через отверстие в кране датчика, а также быстроту наполнения последнего путем изменения скорости угла поворота ручки насоса.
Необходимо помнить, что присутствие пузырьков воздуха в измерительной камере абсолютно недопустимо.
2.4.4. При измерении солености на солемере расходуется много нормальной воды. Поэтому допускается использование субнормальной воды, которая представляет собой морскую воду известной хлорности, приготовленную самостоятельно в лаборатории или на судне и проверенную по нормальной воде. Для ее приготовления берут морскую воду (отбор делать в открытом океане ниже глубины 50 м) с хлорностью выше 18 ‰. Пробу стабилизируют добавлением нескольких кристаллов тимола и затем быстро переливают в бутыль. Ее хлорность определяют титрованием относительно нормальной воды, причем расхождение двух последовательных определений не должно превышать 0,02 делений бюретки. В этом случае берут среднее из двух определений.
Субнормальную воду хранят в темной бутыли, плотно закрытой запарафинированной пробкой с сифонной трубкой, через которую производят ее отбор. Хлорность субнормальной воды необходимо проверять не реже одного раза в неделю, причем она не должна изменяться более чем на 0,02 ‰.
2.4.6. Температуру нормальной воды и проб морской воды измеряют ртутным термометром с точностью ±0,2 °С, причем разность температур не должна превышать ±0,5 °С. По таблице приложения 1 к паспорту прибора определяют положение переключателя "компенсация", соответствующее измеренной температуре.
2.4.7. Калибровка солемера
Калибровка солемера производится в соответствии с инструкцией к прибору.
2.4.8. Проверка температурной компенсации
Необходимо не реже одного раза в шесть месяцев производить проверку температурной компенсации солемера. Для этого его калибруют (см.выше), после чего включают на 3-5 мин тумблер "нагрев" и через 3 мин после его выключения измеряют относительную электропроводность. Разность между начальным и измеренным значениями электропроводности не должна превышать ±0,0002 при изменении температуры в пределах, указанных в таблице приложения 1 к паспорту солемера. В этом случае компенсацию можно считать удовлетворительной. Затем проводят проверку точности компенсации во всем рабочем диапазоне температур, т.е. от 10 до 35 °С. Если же относительная электропроводность изменяется более чем на ±0,0002, то таблицу приложения 1 надо составить заново.
Для этого 1-2 л нормальной воды выдерживают полчаса при 50 °С для удаления растворенных в ней газов и переливают в закрытую литровую колбу. Относительную электропроводность начинают измерять при 10 °С. Температуру пробы изменяют переключателем "нагрев" и измеряют температуру через 2-3 мин после его включения. Экспериментально находят такие значения положений переключателя "компенсация" в рабочем диапазоне температур, при которых обеспечивается температурная компенсация по относительной электропроводности не менее чем на ±0,0002. Если относительная электропроводность возрастает при нагреве воды на 1-2 °С, то следует увеличить значение "компенсации", если убывает - уменьшить. Полученные данные записывают в таблицу приложения 1 к прибору.
2.5. Выполнение измерений
Склянки с пробами выдерживают 2-3 ч недалеко от солемера для принятия ими температуры лабораторного помещения. Измерения электропроводности проб морской воды следует проводить в порядке возрастания солености, поскольку в этом случае сокращается число промывок и, следовательно, повышается производительность работы на солемере.
После калибровки солемера из датчика сливают нормальную воду и промывают его пробой один-два раза. Затем вновь заполняют ячейку пробой, причем появляющиеся пузырьки воздуха следует удалить. Проверяют температуру пробы, которая должна находиться в пределах установленной термокомпенсации. Калибровка прибора сохраняется для всей серии проб. Значение электропроводности отсчитывают по показаниям лимбов переключателя "электропроводность", при этом стрелка индикатора должна быть установлена на нуль. Затем пробу сливают и в датчик наливают новую.
Промывать ячейку пробой каждый раз не обязательно, однако это необходимо делать при проверке калибровки, при скачке солености и при измерении первой пробы следующей станции.
При обнаружении разброса показаний прибора необходимо делать повторные калибровки солемера по нормальной или субнормальной воде через каждые 10-15 проб. Если прибор работает стабильно, то его проверку можно производить реже, через 20-30 проб.
По окончании анализа всей серии проб проверяют калибровку солемера, после чего ячейку несколько раз промывают дистиллированной водой.
Полученные значения электропроводности проб морской воды переводят в соленость по "Международным океанологическим таблицам" [2]. Необходимо отметить, что эти таблицы нельзя использовать для распресненных морских вод.
Определение электропроводности и расчет солености распресненных морских вод можно проводить согласно "Методическим указаниям"*. Следует однако подчеркнуть, что погрешности этих определений метрологически не установлены.
________________
* См. Методические указания по химическому анализу распресненных вод морских устьевых областей рек и эпиконтинентальных морей, N 46. - М.: Гидрометеоиздат, 1984, с.6-13.
2.6. Числовые значения показателей погрешности MBИ
На основании метрологической аттестации, проведенной ВНИИАСМ-НПО "Исари" Госстандарта СССР с 1 по 31 октября 1986 г. (табл.1), настоящая методика определения солености морских вод допущена к применению в организациях Росгидромета.
Таблица 1
Результаты метрологической аттестации
|
|
|
|
Диапазон изменения солености, ‰ | Показатель воспроизводимости ( ), % | Показатель правильности ( ), % | Показатель погрешности МВИ, суммарная погрешность ( ), % |
33,9-35,1 | 0,0068 | 0,030 | 0,030 |
3. Определение хлорности распресненной морской воды*
________________
* Настоящая методика метрологически не аттестована.
В п.1 уже говорилось, что аргентометрическое определение хлорности с последующим вычислением солености по "Океанографическим таблицам" [3] возможно только для вод открытых морей и океанов, для которых существует нормальная вода, т.е. имеет место строгое соответствие хлорности, солености и плотности морской воды. Однако это важнейшее условие заметно нарушается на приустьевых взморьях больших рек вследствие сильного разбавления морских вод речными водами, имеющими другой солевой состав и, что особенно важно, гораздо более низкую концентрацию хлорид-иона.
Распресненной морской водой принято считать воду, в которой содержится до 1 ‰ хлорид-иона. Естественно, что концентрация других солей будет незначительна, что приближает ее плотность к пресной воде. Поэтому содержание хлорид-иона в сильно опресненной воде удобнее относить к 1 л, а не к 1 кг, как это принято для собственно морской воды, и количественно выражать в мг/л.
3.1. Сущность метода анализа
В распресненных морских водах хлорность определяют так же, как и в собственно морских водах, т.е. аргентометрическим титрованием, но с применением более низких концентраций рабочих растворов.
3.2. Средства измерений, оборудование, материалы и реактивы
Для выполнения анализа применяются:
мешалка магнитная - по ТУ 25-11-834;
бюретка автоматическая, калиброванная на 50 мл;
пипетки автоматические, калиброванные на 100; 50; 25; 5 и 1 мл - по ГОСТ 20292;
колбы мерные на 1000; 200 и 100 мл - по ГОСТ 1770;
колба коническая на 250 мл - по ГОСТ 25336;
капельница для индикатора - по ТУ 25-11-1126;
бутыль из темного стекла на 2-3 л для хранения азотнокислого серебра - по ТУ 6-19-45;
промывалка на 0,5-1,0 л для дистиллированной воды - по ТУ 64-1-596;
палочка стеклянная для перемешивания титруемой пробы (при отсутствии магнитной мешалки) - по ТУ 25-11-1049;
банка (склянка) с широким горлом для сливания остатков хлористого серебра - по ТУ 6-19-6;
серебро азотнокислое, х.ч. - по ГОСТ 1277;
натрий хлористый, х.ч. - по ГОСТ 4233;
калий хромовокислый, х.ч. - по ГОСТ 4459.
3.3. Отбор проб
Отбор и хранение проб распресненной морской воды производят аналогично морским водам нормальной солености, за исключением того, что объем отбираемой воды должен быть не менее 200-250 мл.
3.4. Подготовка к анализу
3.4.1. Методы приготовления реактивов для проведения анализа
1. Растворы азотнокислого серебра для получения необходимой точности определения хлорности готовят двух концентраций хлорид-иона - 2,5 и 1 мг/мл.
Их готовят растворением соответственно 12,0 и 4,8 г нитрата серебра в дистиллированной воде в мерной колбе на 1 л и хранят в темных бутылях. Второй раствор можно также получить при разведении 400 мл первого раствора дистиллированной водой в мерной колбе на 1 л. Однако этот способ менее точен и им можно пользоваться лишь в исключительных случаях.
2. Стандартные растворы хлористого натрия используют для установки титра рабочих растворов нитрата серебра. Для этого хлористый натрий прокаливают в фарфоровой чашке при 500-600 °С в электропечи или на горелке при постоянном помешивании стеклянной палочкой до прекращения характерного потрескивания соли. Ее хранят в бюксе в эксикаторе над хлористым кальцием. Готовят два раствора хлористого натрия концентрациями 2,5 и 1,0 мг/мл. Их готовят растворением 4,1210 и 1,6884 г соответственно хлористого натрия в дистиллированной воде в мерной колбе на один литр. Для работы на борту судна эти навески необходимо готовить заблаговременно в береговой лаборатории и хранить их до употребления в хорошо пришлифованных колбочках или бюксах, а лучше всего в запаянных ампулах.
3. Раствор индикатора готовят растворением 10 г химически чистого хромата калия в 90 мл дистиллированной воды (10%-ный раствор).
3.4.2. Определение титра раствора азотнокислого серебра
Перед началом титрования проб воды необходимо проверить титр каждого из полученных растворов нитрата серебра с применением стандартных растворов хлористого натрия с точными титрами хлорид-иона 2,5 и 1,0 мг/мл соответственно. Для этого калиброванную пипетку трижды ополаскивают небольшим количеством используемого раствора хлористого натрия и переносят ею в коническую колбу 25 мл этого раствора, после чего туда же добавляют 75 мл дистиллированной воды из мерного цилиндра. В полученные 100 мл раствора прибавляют 1 мл раствора хромата калия и при энергичном перемешивании титруют соответствующим раствором нитрата серебра. Конец реакции определяют по появлению слабой оранжевой окраски осадка (аналогично титрованию нормальной воды). Титрование проводят дважды и берут средний результат. Титр раствора нитрата серебра вычисляют по формуле
3.5. Проведение анализа
Пробы переносят в помещение лаборатории на 2-3 ч для выравнивания температуры.
3.6. Вычисления результатов анализа
Результаты титрования вычисляют по формуле
4. Требования к квалификации аналитика
Определение солености и хлорности может выполнять инженер или техник-химик со средним специальным образованием, имеющий опыт работы с химическими препаратами.
5. Нормы затрат рабочего времени на анализ
5.1. Для анализа солености воды в 10 пробах аргентометрическим методом требуется 2,6 чел.-ч, в том числе:
на взятие проб из батометра - 0,2 чел.-ч;
на приготовление растворов реактивов - 0,6 чел.-ч;
на подготовку посуды - 0,3 чел.-ч;
на фильтрование раствора азотнокислого серебра - 0,3 чел.-ч;
на выполнение измерений - 0,7 чел.-ч;
на выполнение расчетов - 0,5 чел.-ч.
5.2. Для анализа солености воды в 10 пробах электрометрическим методом требуется 1,6 чел.-ч, в том числе:
на взятие проб из батометра - 0,2 чел.-ч;
на подготовку посуды - 0,4 чел.-ч;
на калибровку солемера - 0,3 чел.-ч;
на выполнение измерений - 0,3 чел.-ч;
на выполнение расчетов - 0,4 чел.-ч.
5.3. Для анализа хлорности воды в 10 пробах требуется 3,1 чел.-ч, в том числе:
на взятие проб из батометра - 0,2 чел.-ч;
на подготовку реактивов - 1,0 чел.-ч;
на подготовку посуды - 0,4 чел.-ч;
на выполнение измерений - 0,9 чел.-ч;
на выполнение расчетов - 0,6 чел.-ч.
СПИСОК ЛИТЕРАТУРЫ
1. Временные методические указания для работ с измерительным комплексом "Зонд-батометр". - Одесса: изд. ОдО ГОИН, 1976. - 70 с.
2. Международные океанологические таблицы. Вып.1. - М.: Гидрометеоиздат, 1969. - 107 с.
3. Океанографические таблицы. - Л.: Гидрометеоиздат, 1975. - 477 с.
4. Океанологические таблицы. - М.: Гидрометеоиздат, 1964. - 140 с.
5. Руководство по методам химического анализа морских вод. - Л.: Гидрометеоиздат, 1977, с.9-26.
6. Федосов М.В., Орадовский С.Г. Определение солености морской воды. - В кн.: Современные методы рыбохозяйственных морских гидрохимических исследований. - М.: Пищевая промышленность, 1973, с.37-44.
ОБЩАЯ ЩЕЛОЧНОСТЬ
Общая щелочность морской воды определяется суммарным содержанием в ней анионов слабых кислот - карбонатов, бикарбонатов, боратов, силикатов и фосфатов. Ввиду незначительного содержания трех последних анионов общая щелочность обычно определяется содержанием только солей угольной кислоты. Следовательно, под общей щелочностью морской воды понимается содержание перечисленных выше анионов слабых кислот, выраженное в эквиваленте угольной кислоты.
Количественно общую щелочность определяют числом миллиэквивалентов сильной кислоты, требующейся для нейтрализации 1 л морской воды. Основное значение определения общей щелочности состоит в том, что с ее помощью можно отличить опреснение моря, вызванное стоком материковых вод, от опреснения, вызванного атмосферными осадками и таянием льдов; последние понижают соленость, но не изменяют общую щелочность. Кроме того, щелочность наряду с рН служит для расчета форм карбонатов и баланса углекислоты в море.
1. Объемно-аналитический метод*
________________
* Методика объемно-аналитического определения метрологически не аттестована.
1.1. Сущность метода анализа
1.2. Средства измерений, оборудование, материалы и реактивы
Для выполнения анализа применяются:
микробюретка на 10 мл, проградуированная через 0,01 мл, с автоматической установкой нуля - по ГОСТ 20292;
пипетки автоматические, калиброванные на 20; 25 и 100 мл - по ГОСТ 20292;
капельница с экспедиционной пипеткой для смешанного индикатора - по ТУ 25-11-1126;
колбы с газопродувной трубкой для титрования проб воды на щелочность с рабочим объемом 25 мл - по ГОСТ 10394;
колбы мерные, калиброванные на 1; 0,5; 0,25 л - по ГОСТ 1770;
бутыли на 3 и 5 л для хранения растворов соляной кислоты - по ТУ 6-19-45;
бутыли стеклянные или пластмассовые для проб. Их предварительно заполняют на несколько суток 1%-ной соляной кислотой, затем тщательно моют дистиллированной водой и сушат - по ТУ 6-19-45;
промывалка для дистиллированной воды - по ТУ 64-1-596;
склянки и трубки для натронной извести и очищающих воздух растворов - по ГОСТ 9964;
стаканы химические на 100 и 500 мл - по ГОСТ 25336;
бюкс или колба с притертой пробкой для хранения буры - по ГОСТ 25336;
эксикаторы - по ГОСТ 6371;
фильтр стеклянный N 2 - по ГОСТ 9775;
колба Бунзена на 0,5 л - по ТУ 25-11-1173;
палочки стеклянные - по ТУ 25-11-1049;
склянка из темного стекла на 500 мл для хранения смешанного индикатора - по ТУ 6-19-6;
ступка агатовая - по ТУ 25-07-1100;
электроплитка на 600-800 Вт - по ТУ 92-208;
шланги вакуумные - по ТУ 38-105881;
насос водоструйный - по ГОСТ 10696;
пробки резиновые - по ГОСТ 7852-76;
бумага фильтровальная - по ГОСТ 12026;
микрокомпрессор воздушный МК-1 - по ТУ 205 РСФСР 07.413;
натрий тетраборнокислый, гидрат (бура), х.ч. - по ГОСТ 4199;
соляная кислота, ч.д.а. - по ГОСТ 3118;
натрий бромистый, ч.д.а. - по ГОСТ 4169;
натр едкий, х.ч. - по ГОСТ 4328;
спирт этиловый ректификат - по ГОСТ 18300;
серная кислота концентрированная (плотность 1,84), х.ч. - по ГОСТ 4204;
индикатор метиленовый красный (метилрот), ч. - по ТУ 6-09-4530;
индикатор метиленовый синий (метилблау), ч. - по ТУ 6-09-2044;
индикатор метилоранж, ч. - по ТУ 6-09-4530;
индикатор фенолфталеин, ч. - по ТУ 6-09-4530;
натрий-аммоний фосфорнокислый, х.ч. - по ГОСТ 4170;
натронная известь - по ГОСТ 22688;
бария гидроксид, х.ч. - по ГОСТ 4107;
аскарит, ч. - по ТУ 6-09-4128;
парафин, ч. - по ТУ 6-09-3637.
1.3. Отбор проб
Пробы воды для определения щелочности отбирают из батометра после взятия проб на кислород и рН. Лучше всего помещать пробы в пластиковые или стеклянные бутыли. Во избежание испарения бутыли плотно закрывают. Бутыль заполняют пробой по возможности полнее для предотвращения значительного изменения концентрации растворенных в воде газов, главным образом углекислого, но с небольшим зазором воздуха, чтобы при изменении температуры во время хранения пробы не выталкивалась пробка. Щелочность желательно определять сразу же после отбора пробы на борту судна.
1.4. Подготовка к анализу
1.4.1. Методы приготовления реактивов для проведения анализа
1. Соляную кислоту концентрацией 0,1 моль/л готовят из фиксанала в 1 л мерной колбе.
2. Соляную кислоту концентрацией 0,02 моль/л готовят растворением 100 мл соляной кислоты 0,1 н в мерной колбе на 0,5 л и доведением до метки дистиллированной водой. Обычно эту кислоту готовят в количестве 3-5 л и хранят в парафинированной изнутри бутыли, закрытой резиновой пробкой с осушительной трубкой, наполненной натронной известью.
Бутыль соединяют с микробюреткой с автоматической установкой нуля. Титр раствора соляной кислоты устанавливают по двум доходным стандартным растворам. Титр должен быть определен с точностью до четвертого знака после запятой.
3. Для приготовления исходного стандартного раствора буры концентрацией 0,02 моль/л реактив дважды перекристаллизовывают из дистиллированной воды. Для этого 25 г соли растворяют при температуре не выше 50 °С в 100 мл воды в химическом стакане и фильтруют горячий раствор через предварительно нагретый стеклянный фильтр N 2. По охлаждении фильтрата до 5-10 °С (в холодильнике или ледяной воде) маточный раствор сливают, а кристаллы отсасывают. Операцию повторяют, но без фильтрования. Соль на фильтре тщательно отжимают стеклянной плоской пробкой и сушат 2-3 дня между листами фильтровальной бумаги. Затем кристаллы растирают в порошок в агатовой ступке и сушат в эксикаторе над расплавленным (смоченным небольшим количеством воды) бромистым натрием до постоянной массы. Если бура химически чистая, то ее только измельчают в ступке и сушат в эксикаторе.
Буру необходимо хранить в колбе или бюксе с хорошо притертым шлифом в эксикаторе над бромистым натрием, так как на воздухе она легко теряет воду (выветривается) и поэтому становится непригодной для приготовления титрованных растворов.
Отвешивают точно 0,9536 г измельченной и высушенной буры и растворяют ее в мерной калиброванной колбе на 250 мл в дистиллированной воде.
4. Для приготовления смешанного индикатора навеску 0,160 г метилового красного (метилрота) растирают в ступке с 5,9 мл раствора NaOH концентрацией 0,1 моль/л (если молярность раствора NaOH не равна точно 0,1, то рассчитывают поправку на его объем). Содержимое ступки смывают в стакан 96%-ным этиловым спиртом (ректификатом) и добавляют еще столько спирта, чтобы его общий объем был равен 400 мл. В полученный раствор метилового красного вносят 24 мл 0,1%-ного спиртового раствора метиленового синего (метилблау), который готовят растворением 0,1 г сухого метиленового синего в 100 мл спирта.
Правильно приготовленный индикатор должен иметь зеленовато-бурую окраску. Если индикатор получился зеленого цвета, то по каплям прибавляют раствор соляной кислоты концентрацией 0,1 моль/л; при буром цвете индикатора прибавляют раствор NaOH концентрацией 0,1 моль/л. Нейтрализацию проводят очень осторожно и при добавлении каждой капли индикатор тщательно перемешивают или стеклянной палочкой, или магнитной мешалкой.
Раствор индикатора хранить долго нельзя. При его помутнении или изменении цвета надо приготовить свежий раствор. Хранить его следует в темной, хорошо закрытой склянке.
В точке перехода при рН=5,55 морская вода в присутствии смешанного индикатора или бесцветна, или имеет слабую серовато-зеленоватую окраску; при рН>5,55 окраска раствора изменяется от серовато-зеленой до зеленоватой или зеленой; при рН<5,55 (морская вода перетитрована) вода приобретает розоватую окраску.
5. Раствор индикатора метилоранжа 1%-ный готовят растворением 1 г индикатора в 100 мл дистиллированной воды.
6. Раствор индикатора фенолфталеина 0,5%-ный готовят растворением 0,5 г индикатора в 100 мл 60-90%-ного этилового спирта.
1.4.2. Очистка проб морской воды от углекислоты и аммиака воздуха
Воздух в лабораторных помещениях всегда содержит небольшое количество аммиака и углекислого газа, которые обычно не мешают определению общей щелочности. Однако при хранении твердой углекислоты (сухого льда) и при курении их концентрации могут резко возрастать, что может отразиться на точности анализа. Это обстоятельство надо иметь в виду. Поэтому желательно периодически проветривать помещение.
Раствор для очистки воздуха от аммиака готовят растворением 10 г натрия-аммония фосфорнокислого в 25 мл дистиллированной воды с последующим добавлением 2 мл концентрированной серной кислоты и нескольких капель индикатора метилоранжа (рабочий раствор должен быть окрашен в розовый цвет).
Натронную известь для очистки воздуха от углекислоты используют в виде прокаленного гранулированного препарата, который хранят в эксикаторе или в хорошо закрытой склянке с запарафиненной пробкой. Необходимо периодически проверять качество извести. Для этого через трубку с натронной известью пропускают воздух в баритовую воду - насыщенный прозрачный раствор гидроксида бария. Если после 10-минутного пропускания баритовая вода помутнела, значит известь непригодна и должна быть заменена.
1.4.3. Установка титра соляной кислоты по исходному раствору буры
1.5. Проведение анализа
Пробы воды для определения щелочности должны принять температуру помещения. Очистка воздуха осуществляется пропусканием его через систему соединенных последовательно поглотительных склянок между воздухонагнетательным электронасосом и колбой для титрования: первая склянка с крепким раствором щелочи для поглощения углекислоты, вторая с кислым раствором фосфата натрия - аммония для поглощения аммиака с несколькими каплями 1%-ного индикатора метилоранжа, далее трубка с натронной известью для окончательного поглощения углекислоты и затем контрольная склянка с баритовым раствором с несколькими каплями 0,5%-ного индикатора фенолфталеина. При пожелтении поглотителя для аммиака и обесцвечивании баритовой воды необходимо заменить все поглотители.
В специальную колбу с газопродувной трубкой отбирают автоматической калиброванной пипеткой 20 или 25 мл морской воды, добавляют три капли смешанного индикатора и, пропуская через пробу очищенный воздух, титруют раствором соляной кислоты концентрацией 0,02 моль/л с известным титром. Титрование сначала ведут быстро, по каплям, а затем осторожно до появления устойчивой в течение 3 мин очень слабой розовой окраски. При повторном титровании результат не должен отличаться более чем на 0,005-0,01 мл.
1.6. Обработка результатов анализа
Щелочность определяют с точностью до третьего знака после запятой по следующей формуле:
2. Электрометрический (потенциометрический) метод
2.1. Сущность метода
Электрометрический метод определения щелочности отличается от объемно-аналитического метода только тем, что титрование проводят автоматически без участия оператора, что позволяет ускорить титрование и повысить его точность. Установка же титра соляной кислоты и ход анализа проб морской воды на щелочность остаются прежними. На рис.5 показана общая схема работы установки для определения общей щелочности [1, 2].
Рис.5. Схема установки для определения общей щелочности
3 - капилляры для подачи раствора соляной кислоты и воздуха; 4 - электроды
стеклянные ЭСЛ-11Г-05 и ЭВЛ-1М3; 5 - стакан для титрования пробы;
6 - магнитная мешалка; 7 - рН-метр "рН-340"; 8 - блок автоматического титрования БАТ-12ЛМ;
9 - автоматическая бюретка Т-360Б; 10 - титрограф Т-360; 11 - бутыль с раствором
соляной кислоты концентрацией 0,02 моль/л.
2.2. Средства измерений, оборудование, материалы и реактивы
Для выполнения анализа применяются:
рН-метр - милливольтметр типа рН-340 - по ТУ 25-05-1689;
блок автоматического титрования БАТ-12ЛМ;
титрограф лабораторный Т-360 с бюреткой автоматической Т-360Б;
мешалка магнитная - по ТУ 25-11-834;
микрокомпрессор воздушный МК-1 - по ТУ 205 РСФСР 07.413;
электроды стеклянные ЭСЛ-11Г-05 и ЭВЛ-1М3 - по ТУ 25-05-1867;
стаканы для титрования на 50 мл - по ГОСТ 25336;
капилляры (входят в комплект рН-метра) для подачи раствора соляной кислоты и очищенного воздуха - по ТУ 25-05-1689.
2.3. Отбор проб
Пробы воды отбираются так же, как описано в п.1.3.
2.4. Подготовка средств измерений к работе
2.4.1. Настройка рН-метра по буферным растворам
1. Для измерения рН раствора применяют электроды различных типов, но готовят их к работе одним и тем же способом. Перед работой стеклянные электроды держат сначала 8-10 ч в растворе соляной кислоты (концентрацией 0,1 моль/л), а затем 10-12 ч в дистиллированной воде. Вспомогательный электрод сравнения заполняют насыщенным при комнатной температуре раствором хлористого калия. Поскольку возникающий на электродах потенциал зависит также от температуры раствора, в рН-метре предусмотрена или автоматическая температурная компенсация с помощью термокомпенсатора, или ручная компенсация с помощью потенциометра, расположенного на передней панели рН-метра.
рН-метр, подключаемый к блоку автоматического титрования БАТ-12ЛМ и титрографу Т-360, должен быть предварительно настроен по буферным стандартным растворам. Эти растворы готовят из фиксаналов, входящих в комплект каждого прибора, и они имеют следующие контрольные значения рН: 1,68; 3,56; 4,01; 6,86; 9,22. Настройку рН-метра проводят согласно инструкции, прилагаемой к прибору. При выполнении серийных анализов по определению общей щелочности в стационарной лаборатории необходимо периодически, не менее одного раза в месяц, проводить проверку рН-метра по буферным растворам. В судовых условиях эту операцию следует проводить каждый день.
2. Подготовка и настройка блока автоматического титрования заключаются в установке нуля регулятора. Эту операцию выполняют согласно инструкции по эксплуатации прибора.
3. Перед работой с автоматической бюреткой Т-360Б необходимо правильно подобрать диаметр штока-плунжера и скорость подачи раствора с последующей калибровкой объема, вытесняемого поршнем бюретки. Калибровку проводят так же, как и для обычной бюретки.
4. Проверку и настройку титрографа проводят после получасового прогрева. Проверка заключается в контроле параметров входного сигнала рН-метра и сигнала усилителя титрографа и выполняется согласно инструкции.
2.4.2. Подготовка к анализу титрографа с автоматической бюреткой
и блоком автоматического титрования
После настройки всех приборов и согласования показаний рН-метра с самописцем титрографа в нескольких точках шкалы рН-метра с помощью растворов с разными рН, необходимо выполнить следующие предварительные операции:
1) блок автоматического титрования
а) ручку переключателя "выдержка времени" переводят в положение "40 с";
б) ручки переключателей "заданная точка рН точно и грубо" устанавливают на значение рН=3,00;
в) ручку "зона пропорциональности" ("импульсная подача") ставят на отметку 0,2;
г) переключатель "род работ" - в положение "ручное" с последующим переводом в положение "вниз" для включения всей установки;
2) автоматическая бюретка
а) подсоединяют один полиэтиленовый шланг к бутыли с 0,02 моль/л раствором НСl, а второй - к капилляру для подачи раствора соляной кислоты в стакан для титрования;
б) заполняют объем стакана бюретки раствором соляной кислоты, для чего ручку на передней панели переводят в положение "заполнение"; при этом шток-плунжер автоматически займет исходное положение и загорится сигнальная лампочка "начало титрования";
3) титрограф Т-360
а) тумблер "контроль-работа" переводят в положение "работа";
б) переключатель "входной сигнал мв" устанавливают на значение 2000;
в) переключатель "запись" ставят в положение "интегрирование";
г) переключатель скорости движения диаграммной ленты - в положение "4";
д) тумблеры "ход ленты" переводят в положение "автоматическое" и "вниз";
4) рН-метр
а) переключатель "размах" переводят в положение "15рН";
б) ручкой термокомпенсатора устанавливают ту температуру раствора, которую определяют по контрольному термометру;
2.5. Выполнение измерений
Калиброванной пипеткой на 25 мл отбирают пробу морской воды в сухой стакан для титрования и опускают в него мешалку.
Включают магнитную мешалку.
Опускают электроды рН-метра в стакан.
Переключатель БАТ "род работ" переводят в положение "вниз".
Включают подачу раствора соляной кислоты, для чего ручку автоматической бюретки поворачивают в положение "титрование".
Одновременно с началом подачи раствора соляной кислоты начинает двигаться диаграммная лента самописца титрографа. Кривая титрования, записанная на ленте, имеет S-образную форму (рис.6), причем первая точка перегиба кривой соответствует значению рН=5,4. При достижении рН=3,00 происходит автоматическая остановка титрования, которую обеспечивает блок автоматического титрования. После этого записывают конечное значение рН и объем соляной кислоты, пошедшей на титрование, и поворачивают переключатель блока автоматического титрования "род работ" в положение "ручное", а также переводят ручку переключателя автоматической бюретки в положение "заполнение". При этом стакан бюретки автоматически заполняется новой порцией соляной кислоты.
Рис.6. Вид кривой титрования
Количество раствора соляной кислоты определяют следующим образом:
1) из точки рН=5,4 опускают перпендикуляр до пересечения с кривой титрования;
2) из точки их пересечения опускают перпендикуляр на вторую координату - количество соляной кислоты - и отсчитывают значение объема (а, мл) соляной кислоты.
Щелочность [(мг/моль)/л] определяют с точностью до третьего знака после запятой по той же формуле, что и в объемно-аналитическом методе (см. п.1.6).
2.6. Числовые значения показателей погрешности МВИ
На основании метрологической аттестации, проведенной ВНИИАСМ-НПО "Исари" Госстандарта СССР с 01.09 по 20.12.90 (табл.2), настоящая методика электрометрического определения общей щелочности морской воды допущена к применению в организациях Росгидромета.
Таблица 2
Результаты метрологической аттестации
|
|
|
|
|
Характеристика | Диапазон значений, (мг/моль)/л | Показатель воспроизводимости ( ), % | Показатель правильности ( ), % | Показатель погрешности МВИ, суммарная погрешность ( ), % |
Щелочность | 0,8-4,0 | 2,1 | 4,0 | 4,7 |
3. Требования к квалификации аналитика
Определение общей щелочности может выполнять инженер или техник-химик со средним специальным образованием, имеющий опыт работы с химическими препаратами.
4. Нормы затрат рабочего времени на анализ
4.1. Для анализа 10 проб объемно-аналитическим методом требуется 6,0 чел.-ч, в том числе:
на взятие проб из батометра - 0,2 чел.-ч;
на приготовление растворов реактивов - 3,5 чел.-ч;
на подготовку посуды - 0,6 чел.-ч;
на выполнение измерений - 1 чел.-ч;
на выполнение расчетов - 0,7 чел.-ч.
4.2. Для анализа 10 проб электрометрическим методом требуется 6,8 чел.-ч, в том числе:
на взятие проб из батометра - 0,3 чел.-ч;
на приготовление растворов - 4,5 чел.-ч;
на подготовку посуды - 0,7 чел.-ч;
на выполнение измерений - 0,8 чел.-ч;
на выполнение расчетов - 0,5 чел.-ч.
СПИСОК ЛИТЕРАТУРЫ
1. Руководство по методам химического анализа морских вод. - Л.: Гидрометеоиздат, 1977, с.26-36.
2. Methods of seawater analysis/Grasshoff K. et. al. (Eds.). - Verlag Chemie, Weinheim, 1983, p.99-123.
ВОДОРОДНЫЙ ПОКАЗАТЕЛЬ (рН)
Значение рН морской воды зависит от ее солевого состава, содержания растворенных газов и органических соединений. Оно регулируется углекислотно-карбонатной системой, которая является наиболее сильным буфером морских вод и изменяется в открытом море в сравнительно узком диапазоне 7,7-8,6. Однако даже небольшие изменения рН имеют громадное значение для процессов, происходящих в толще морской воды.
Для определения рН применяют визуально-колориметрический и потенциометрический методы [1]-[3].
1. Колориметрический метод*
________________
* Методика колориметрического определения рН метрологически не аттестована.
1.1. Сущность метода анализа
Колориметрическое определение рН заключается в том, что окраску пробы морской воды с введенным в нее индикатором сравнивают с окраской буферных эталонов стандартной шкалы с тем же индикатором, точные значения рН которых установлены электрометрическим методом. Сравнение ведут визуально по интенсивности и оттенку основного цвета. Стандартные буферные растворы готовят из борной кислоты и буры в определенных концентрациях и запаивают их в ампулы из белого стекла, набор которых и составляет стандартную шкалу. Обычно применяют шкалу с интервалом значений рН=0,05...0,10.
В качестве индикаторов используют растворы крезолового красного, тимолового синего и бромтимолового синего, которые применяют в зависимости от диапазона рН. Первый индикатор наиболее пригоден в интервале 7,6-8,2; второй - 8,2-9,1; а третий применяют при рН<7,3.
Стандартные шкалы выпускают двух видов: для морских и пресных вод. Они отличаются тем, что буферные растворы для морских вод готовят с добавлением хлористого натрия, а для пресных - без него. Поэтому недопустимо использовать шкалу для пресных вод при определении рН морской воды и наоборот.
Нельзя работать со шкалой при ярком солнечном свете, так как индикаторы при этом выцветают. Ящик шкалы в нерабочем состоянии должен быть плотно закрыт, и его следует открывать только на время сравнения окрасок. При соблюдении всех предосторожностей шкалу можно использовать не более 6 месяцев, после чего ее следует заменить.
К недостаткам визуального колориметрического определения рН относятся субъективность цветового восприятия оператора и факторы, связанные с присутствием естественных примесей в пробе морской воды: окислителей, восстановителей, взвешенных и коллоидных частиц, а также наличие у морской воды собственной окраски.
1.2. Средства измерений, оборудование, материалы и реактивы
Для выполнения анализа применяются:
шкала рН ГМ-57. В комплект шкалы входят: набор стандартных буферных растворов, запаянных в ампулы; микропипетки для индикаторов; растворы индикаторов в двух склянках; ящик с гнездами для хранения пробирок с буферными растворами, пипеток, термометра и склянок с индикаторами. К комплекту в отдельной таре приложены запасные растворы индикаторов. Все принадлежности уложены в ящик с гнездами. На внутренней стороне крышки ящика находится паспорт шкалы с указанием диапазона буферных растворов и индикаторов, объема пробы и количеств добавляемого в пробу индикатора;
пробирки - по ГОСТ 10515 для отбора и обработки проб, равные по диаметру ампулам буферных растворов; они должны быть пронумерованы, иметь хорошо подогнанные пробки и кольцевую черту, соответствующую объему отбираемой пробы;
штатив для пробирок - по ТУ 64-1-2669;
компаратор для колориметрирования в темное время суток (рис.7);
термометр - по ГОСТ 215;
пластинка молочного стекла (или белый лист плотной бумаги) - для фона.
Рис.7. Размещение ампул в компараторе при определении рН окрашенных и мутных морских вод
1.3. Отбор проб
Пробы морской воды для определения рН отбирают из батометра непосредственно после отбора пробы для определения растворенного кислорода, наливают их до метки в предварительно дважды промытые исследуемой водой специальные пронумерованные пробирки, имеющие кольцевую черту, и сразу же определяют рН. В том случае, если анализ нельзя провести немедленно, необходимо отобрать пробу сразу же после поднятия батометра, заполнить ею до краев полиэтиленовые бутыли объемом 50-100 мл, сейчас же закрыть их плотной винтовой пробкой и хранить до начала анализа в темноте при низкой температуре. Ни при каких обстоятельствах нельзя задерживать определение рН более чем на 2 ч после взятия пробы.
1.4. Проведение анализа
После отбора пробы сразу же приступают к колориметрированию. Для этого в пробирку наливают пробу до черты (обычно 15 мл) и добавляют индикатор в количестве, указанном в паспорте шкалы (обычно 0,5 мл). Пробирку закрывают пробкой и содержимое осторожно перемешивают плавным перевертыванием (не встряхивать, так как это может нарушить равновесие углекислоты). Затем сравнивают окраску пробы с окраской стандартных растворов шкалы. Держа пробирку с пробой за верхний конец, подносят ее к пробиркам шкалы, не вынимая их пока из гнезд. Подобрав визуально эталон, наиболее близкий по интенсивности и оттенку к пробе, его вторично сравнивают с пробой, которую поочередно ставят справа и слева от эталона. Если окраска пробы совпадает с окраской эталона, то значение рН последнего и будет соответствовать значению рН пробы. Если цвет пробирки с пробой занимает визуально определяемое промежуточное значение между двумя эталонами, разность значений рН которых составляет от 0,04 до 0,13 в зависимости от диапазона, то рН пробы будет равно рН одного из этих эталонов плюс или минус (в зависимости от взятого эталона) 0,02-0,06. Например, окраска пробы визуально занимает среднее положение между эталонами с рН=8,14 и рН=8,20. Тогда значение рН пробы будет равно 8,14+0,03=8,17 или 8,20-0,03=8,17. Этот результат записывают в журнал.
В случае желтоватой или мутной морской воды, что нередко бывает в прибрежных и предустьевых районах моря, следует использовать компаратор по схеме, представленной на рис.7.
Выбирают пробирки шкалы, наиболее близкие по тону окраски к пробе.
Одновременно с найденным значением рН записывают в журнал температуру шкалы по термометру, находящемуся в пробирке с водой, которая хранится в одном из гнезд ящика. Измеряют и записывают температуру пробы в момент определения рН. Температуру воды in situ записывают в журнал по показаниям опрокидывающегося термометра.
Для измерения температуры пробы при сравнении окрасок одновременно наполняют две пробирки: одну - для сравнения со шкалой, а другую - для измерения температуры погружением в нее термометра, пропущенного через пробку. Отсчет температуры производят в целых градусах и не вынимая термометра из воды.
1.5. Вычисление истинного значения рН
Таблица 3
|
|
|
|
|
|
|
|
|
|
|
* ° С | Визуально определяемое значение рН | |||||||||
| 7,7 | 7,8 | 7,9 | 8,0 | 8,1 | 8,2 | 8,3 | 8,4 | 8,5 | 8,6 |
0 | 0,04 | 0,05 | 0,06 | 0,07 | 0,08 | 0,10 | 0,11 | 0,13 | 0,15 | 0,16 |
2 | 0,04 | 0,04 | 0,05 | 0,06 | 0,08 | 0,09 | 0,10 | 0,11 | 0,13 | 0,14 |
4 | 0,03 | 0,04 | 0,05 | 0,06 | 0,07 | 0,09 | 0,09 | 0,10 | 0,11 | 0,12 |
6 | 0,03 | 0,03 | 0,04 | 0,05 | 0,06 | 0,07 | 0,07 | 0,08 | 0,09 | 0,10 |
8 | 0,03 | 0,03 | 0,03 | 0,04 | 0,05 | 0,06 | 0,06 | 0,07 | 0,08 | 0,08 |
10 | 0,02 | 0,02 | 0,03 | 0,03 | 0,04 | 0,04 | 0,05 | 0,05 | 0,06 | 0,06 |
12 | 0,02 | 0,02 | 0,02 | 0,02 | 0,03 | 0,03 | 0,04 | 0,04 | 0,04 | 0,05 |
14 | 0,01 | 0,01 | 0,01 | 0,02 | 0,02 | 0,02 | 0,02 | 0,03 | 0,03 | 0,03 |
16 | 0,01 | 0,01 | 0,01 | 0,01 | 0,01 | 0,01 | 0,01 | 0,01 | 0,01 | 0,02 |
18 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 |
20 | -0,01 | -0,01 | -0,01 | -0,01 | -0,01 | -0,01 | -0,01 | -0,01 | -0,01 | -0,02 |
22 | -0,01 | -0,01 | -0,02 | -0,02 | -0,02 | -0,02 | -0,02 | -0,02 | -0,03 | -0,03 |
24 | -0,02 | -0,02 | -0,03 | -0,03 | -0,03 | -0,03 | -0,03 | -0,04 | -0,04 | -0,04 |
26 | -0,03 | -0,03 | -0,03 | -0,04 | -0,04 | -0,04 | -0,05 | -0,05 | -0,05 | -0,05 |
28 | -0,03 | -0,04 | -0,04 | -0,04 | -0,05 | -0,05 | -0,06 | -0,06 | -0,06 | -0,06 |
30 | -0,04 | -0,05 | -0,05 | -0,05 | -0,06 | -0,06 | -0,07 | -0,07 | -0,07 | -0,08 |
Примечание. Поправку прибавляют с ее знаком.
________________ * Температура буферных растворов в момент определения рН. |
Таблица 4
и пробы морской воды в момент определения рН
|
|
|
Крезоловый* красный | Тимоловый** синий | |
1 | 0,01 | 0,01 |
2 | 0,02 | 0,02 |
3 | 0,03 | 0,02 |
4 | 0,04 | 0,03 |
5 | 0,04 | 0,04 |
6 | 0,05 | 0,05 |
7 | 0,06 | 0,06 |
8 | 0,07 | 0,06 |
9 | 0,08 | 0,07 |
10 | 0,09 | 0,08 |
11 | 0,10 | 0,09 |
12 | 0,11 | 0,10 |
13 | 0,12 | 0,10 |
14 | 0,13 | 0,11 |
15 | 0,14 | 0,12 |
16 | 0,14 | 0,13 |
17 | 0,15 | 0,14 |
18 | 0,16 | 0,14 |
19 | 0,17 | 0,15 |
20 | 0,18 | 0,16 |
21 | 0,19 | 0,17 |
22 | 0,20 | 0,18 |
23 | 0,21 | 0,18 |
24 | 0,22 | 0,19 |
25 | 0,22 | 0,20 |
Примечание. При вычислении рН поправку прибавляют с ее знаком, т.е. при , она положительна, а при - отрицательна.
________________ * = 0,009. ** = 0,008. |
Таблица 5
в моменты определения рН и взятия пробы (in situ)
|
|
|
|
|
|
|
|
|
|
|
|
рН | |||||||||||
| 7,6 | 7,7 | 7,8 | 7,9 | 8,0 | 8,1 | 8,2 | 8,3 | 8,4 | 8,5 | 8,6 |
1 | 0,01 | 0,01 | 0,01 | 0,01 | 0,01 | 0,01 | 0,01 | 0,01 | 0,01 | 0,01 | 0,01 |
2 | 0,02 | 0,02 | 0,02 | 0,02 | 0,02 | 0,02 | 0,02 | 0,02 | 0,02 | 0,02 | 0,02 |
3 | 0,03 | 0,03 | 0,03 | 0,03 | 0,03 | 0,03 | 0,03 | 0,03 | 0,03 | 0,03 | 0,04 |
4 | 0,03 | 0,04 | 0,04 | 0,04 | 0,04 | 0,04 | 0,04 | 0,04 | 0,05 | 0,05 | 0,05 |
5 | 0,04 | 0,04 | 0,05 | 0,05 | 0,05 | 0,05 | 0,05 | 0,06 | 0,06 | 0,06 | 0,06 |
6 | 0,05 | 0,05 | 0,06 | 0,06 | 0,06 | 0,06 | 0,06 | 0,07 | 0,07 | 0,07 | 0,07 |
7 | 0,06 | 0,06 | 0,07 | 0,07 | 0,07 | 0,07 | 0,07 | 0,08 | 0,08 | 0,08 | 0,08 |
8 | 0,07 | 0,07 | 0,07 | 0,08 | 0,08 | 0,08 | 0,08 | 0,09 | 0,09 | 0,09 | 0,10 |
9 | 0,08 | 0,08 | 0,08 | 0,09 | 0,09 | 0,09 | 0,10 | 0,10 | 0,10 | 0,10 | 0,11 |
10 | 0,09 | 0,09 | 0,09 | 0,10 | 0,10 | 0,10 | 0,11 | 0,11 | 0,11 | 0,12 | 0,12 |
11 | 0,09 | 0,10 | 0,10 | 0,11 | 0,11 | 0,11 | 0,12 | 0,12 | 0,12 | 0,13 | 0,13 |
12 | 0,10 | 0,11 | 0,11 | 0,12 | 0,12 | 0,12 | 0,13 | 0,13 | 0,14 | 0,14 | 0,14 |
13 | 0,11 | 0,12 | 0,12 | 0,12 | 0,13 | 0,13 | 0,14 | 0,14 | 0,15 | 0,15 | 0,16 |
14 | 0,12 | 0,13 | 0,13 | 0,13 | 0,14 | 0,14 | 0,15 | 0,15 | 0,16 | 0,16 | 0,17 |
15 | 0,13 | 0,14 | 0,14 | 0,14 | 0,15 | 0,15 | 0,16 | 0,16 | 0,17 | 0,17 | 0,18 |
16 | 0,14 | 0,14 | 0,15 | 0,15 | 0,16 | 0,16 | 0,17 | 0,18 | 0,18 | 0,19 | 0,19 |
17 | 0,15 | 0,15 | 0,16 | 0,16 | 0,17 | 0,18 | 0,18 | 0,19 | 0,19 | 0,20 | 0,20 |
18 | 0,15 | 0,16 | 0,17 | 0,17 | 0,18 | 0,19 | 0,19 | 0,20 | 0,20 | 0,21 | 0,22 |
19 | 0,16 | 0,17 | 0,18 | 0,18 | 0,19 | 0,20 | 0,20 | 0,21 | 0,21 | 0,22 | 0,23 |
20 | 0,17 | 0,18 | 0,19 | 0,19 | 0,20 | 0,21 | 0,21 | 0,22 | 0,23 | 0,23 | 0,24 |
21 | 0,18 | 0,19 | 0,20 | 0,20 | 0,21 | 0,22 | 0,22 | 0,23 | 0,24 | 0,24 | 0,25 |
22 | 0,19 | 0,20 | 0,20 | 0,21 | 0,22 | 0,23 | 0,23 | 0,24 | 0,25 | 0,26 | 0,26 |
23 | 0,20 | 0,21 | 0,21 | 0,22 | 0,23 | 0,24 | 0,24 | 0,25 | 0,26 | 0,27 | 0,28 |
24 | 0,21 | 0,22 | 0,22 | 0,23 | 0,24 | 0,25 | 0,25 | 0,26 | 0,27 | 0,28 | 0,29 |
25 | 0,22 | 0,22 | 0,23 | 0,24 | 0,25 | 0,26 | 0,26 | 0,28 | 0,28 | 0,29 | 0,30 |
Таблица 6
|
|
‰ | |
0,2 | 0,20 |
0,4 | 0,18 |
0,6 | 0,16 |
0,8 | 0,14 |
1 | 0,12 |
2 | 0,06 |
3 | 0,02 |
4 | -0,01 |
5 | -0,04 |
6 | -0,06 |
7 | -0,08 |
8 | -0,09 |
9 | -0,11 |
10 | -0,12 |
11 | -0,13 |
12 | -0,14 |
13 | -0,15 |
14 | -0,16 |
15 | -0,17 |
16 | -0,18 |
17 | -0,19 |
18 | -0,19 |
19 | -0,20 |
20 | -0,20 |
21 | -0,21 |
22 | -0,21 |
23 | -0,22 |
24 | -0,22 |
25 | -0,23 |
26 | -0,23 |
27 | -0,23 |
28 | -0,24 |
29 | -0,24 |
30 | -0,24 |
31 | -0,25 |
32 | -0,25 |
33 | -0,26 |
34 | -0,26 |
35 | -0,26 |
36 | -0,26 |
37 | -0,26 |
38 | -0,26 |
Примечание. Поправку прибавляют с ее знаком.
Таблица 7
|
|
|
|
|
|
|
|
|
|
|
|
рН | 7,6 | 7,7 | 7,8 | 7,9 | 8,0 | 8,1 | 8,2 | 8,3 | 8,4 | 8,5 | 8,6 |
0,0086 | 0,0090 | 0,0093 | 0,0096 | 0,0100 | 0,0103 | 0,0106 | 0,0110 | 0,0113 | 0,0116 | 0,0120 |
2. Электрометрический метод
2.1. Сущность метода анализа
Электрометрический метод определения рН основан на измерении потенциала элемента, состоящего из двух электродов: индикаторного (стеклянного) и сравнительного (хлорсеребряного или каломельного). Этот метод, как и колориметрический, является сравнительным из-за непостоянства "асимметрического" потенциала стеклянного электрода, вследствие чего рН-метр необходимо стандартизировать с помощью буферных растворов. Однако этот потенциал линейно зависит от концентрации ионов водорода в растворе в диапазоне значений рН=1...10.
Электрометрическому определению рН не мешает окраска исследуемой воды, мутность, присутствие окислителей, восстановителей и повышенное содержание солей. По литературным [2, 3] и нашим [1] данным, ошибка, обусловленная влиянием растворенных солей (для значений S<35‰), не превышает ±0,01...0,015 ед. рН.
На величину рН большое влияние оказывает температура, а на глубинах более 1000 м также и гидростатическое давление. С повышением температуры рН уменьшается в результате изменения константы диссоциации воды. Кроме того, эти показатели косвенно влияют на рН, изменяя константу диссоциации угольной кислоты.
Температурный коэффициент равен 0,0118 ед. рН/°С при давлении 1 атм [2]. Эта формула справедлива для всех диапазонов солености и температуры.
________________
2.2. Средства измерений, оборудование, материалы и реактивы
Для выполнения анализа применяются:
рН-метр любого типа, например "рН-121" с набором измерительных электродов;
термостат, например ТС-16А;
колба мерная на 1000 мл - по ГОСТ 1770;
склянки широкогорлые с притертыми либо резиновыми пробками для отбора и термостатирования проб (диаметр отверстия - 50 мм) - по ГОСТ 25336;
склянки для стандартных буферных растворов - по ТУ 6-19-6;
стакан на 50 мл для измерительных электродов - по ГОСТ 25336;
эксикатор - по ГОСТ 6371;
сосуд с крышкой для термостатирования проб - по ГОСТ 10565;
фиксаналы для приготовления буферных растворов с рН=1,68; 3,56; 4,01; 6,86 и 9,18 (прилагаются к каждому рН-метру);
калия хлорид, х.ч. - по ГОСТ 4234;
кислота соляная, ч.д.а. - по ГОСТ 3118.
2.3. Отбор проб
Отбор и хранение проб морской воды для определения рН проводят так же, как и в визуально-колориметрическом методе.
2.4. Подготовка к анализу
2.4.1. Методы приготовления реактивов для проведения анализа
1. Стандартные буферные растворы с рН=1,68; 3,56; 4,01; 6,86 и 9,18 для градуировки стеклянного электрода готовят из прилагаемых к каждому рН-метру фиксаналов на дистиллированной воде. Приведенные значения рН рассчитаны для 25 °С. Для других температур они представлены в табл.8.
Таблица 8
Изменение рН стандартных буферных растворов в зависимости от температуры
|
|
|
|
|
|
Температура, °С | рН при 25 °С | ||||
| 1,68 | 3,56 | 4,01 | 6,86 | 9,18 |
5 | 1,67 | - | 4,01 | 6,95 | 9,39 |
10 | 1,67 | - | 4,00 | 6,92 | 9,33 |
15 | 1,67 | - | 4,00 | 6,90 | 9,27 |
20 | 1,68 | - | 4,00 | 6,88 | 9,22 |
25 | 1,68 | 3,56 | 4,01 | 6,86 | 9,18 |
30 | 1,69 | 3,55 | 4,01 | 6,84 | 9,14 |
35 | 1,69 | 3,55 | 4,02 | 6,84 | 9,10 |
40 | 1,70 | 3,54 | 4,03 | 6,84 | 9,07 |
2. Раствор хлористого калия насыщенный при 25 °С готовят растворением соли в дистиллированной воде до появления избыточного количества осадка.
3. Раствор соляной кислоты концентрацией 0,1 моль/л готовят из фиксанала в мерной колбе на 1 л.
2.4.2. Стандартизация прибора
Перед началом работы рН-метр настраивают по буферным растворам в соответствии с инструкцией, прилагаемой к прибору. В дальнейшем перед каждой серией определений рН прибор проверяют по стандартным буферным растворам с рН=6,86 и рН=9,18. Непременным условием является необходимость проведения стандартизации прибора при температуре, равной или близкой к температуре измерения (термостатирования) пробы в соответствии с данными табл.8. Разность температур не должна превышать 1 °С.
2.5. Проведение анализа
Между измерениями электроды следует оставлять в морской воде, а при более длительном хранении - в дистиллированной воде или в растворе НСl концентрацией 0,1 моль/л.
В том случае, когда температура проб in situ отличается более чем на 5-10 °С от температуры окружающей среды, при которой проводят измерение рН, целесообразно применять "водяное" термостатирование, обеспечивающее более быстрое достижение заданной температуры. Термостатирование этим способом следует проводить в сосуде с крышкой (рис.8), соединенном посредством патрубков 2 и 3 с термостатом 4. Последний обеспечивает непрерывную подачу термостатирующей жидкости в сосуд 1, снабженный внутренним вкладышем с отверстиями для склянок с исследуемой водой, которые помещают в него сразу же после отбора проб. Уровень термостатирующей жидкости в 1 должен быть максимально высоким.
Рис.8. "Водяное" термостатирование пробы
1 - сосуд с крышкой; 2, 3 - патрубки для ввода и вывода термостатирующей жидкости; 4 - термостат ТС-16А.
Температуру проб контролируют с помощью термометра в склянке с контрольной пробой и по достижении ее заданного значения измеряют рН, действительное значение которого затем рассчитывают по формуле (1).
2.6. Обработка результатов
2.6.1. Вычисление результатов измерений
Таблица 9
|
|
7,5 | 35 ·10 |
7,6 | 31 ·10 |
7,7 | 28 ·10 |
7,8 | 25 ·10 |
8,0 | 22 ·10 |
8,1 | 21 ·10 |
8,2 | 20 ·10 |
8,3 | 20 ·10 |
2.6.2. Числовые значения показателей погрешности МВИ
На основании метрологической аттестации, проведенной ВНИИАСМ-НПО "Исари" Госстандарта СССР с 1.10 по 31.10.86 г. (табл.10), настоящая методика электрометрического определения рН морской воды допущена к применению в организациях Росгидромета.
Таблица 10
Результаты метрологической аттестации
|
|
|
|
Диапазон значений рН | Показатель воспроизводимости ( ), ед. рН | Показатель правильности ( ), ед. рН | Показатель погрешности МВИ, суммарная погрешность ( ), ед. рН |
7,6-8,3 | 0,005 | 0,04 | 0,04 |
3. Требования к квалификации аналитика
Определение рН может выполнять инженер или техник-химик со средним специальным образованием, имеющий опыт работы с химическими препаратами.
4. Нормы затрат рабочего времени на анализ
4.1. Для анализа 10 проб колориметрическим методом требуется 0,9 чел.-ч, в том числе:
на взятие проб из батометра - 0,2 чел.-ч;
на подготовку посуды, шкалы рН - 0,3 чел.-ч;
на сравнение окраски с эталонами - 0,2 чел.-ч;
на выполнение измерений - 0,1 чел.-ч;
на выполнение расчетов - 0,1 чел.-ч.
4.2. Для анализа 10 проб электрометрическим методом требуется 1,6 чел.-ч, в том числе:
на взятие проб из батометра - 0,2 чел.-ч;
на подготовку посуды и растворов - 0,9 чел.-ч;
на подготовку рН-метра к работе - 0,1 чел.-ч;
на выполнение измерений - 0,2 чел.-ч;
на выполнение расчетов - 0,2 чел.-ч.
СПИСОК ЛИТЕРАТУРЫ
1. Руководство по методам химического анализа морских вод. - Л.: Гидрометеоиздат, 1977, с.36-48.
2. Chemical methods for use in marine environmental monitoring/IOC, Manuals and guides, No 12. - UNESCO, 1983, p.2-6.
3. Methods of seawater analysis/Grasshoff K. et. al. (Eds.). - Verlag Chemie, Weinheim, 1983, p.85-97.
РАСТВОРЕННЫЙ КИСЛОРОД
Растворенный в морской воде кислород является одним из важнейших биогидрохимических показателей состояния среды. Он обеспечивает существование водных организмов и определяет интенсивность окислительных процессов в морях и океанах. Несмотря на большой расход, его содержание в поверхностном слое почти всегда близко к 100%-ному насыщению при данных температуре, солености и давлении. Это связано с тем, что его убыль постоянно восполняется как в результате фотосинтетической деятельности водорослей, главным образом фитопланктона, так и из атмосферы. Последний процесс протекает вследствие стремления концентраций кислорода в атмосфере и поверхностном слое воды к динамическому равновесию, при нарушении которого кислород поглощается поверхностным слоем океана.
В зоне интенсивного фотосинтеза (в фотическом слое) часто наблюдается значительное пересыщение морской воды кислородом (иногда до 120-125% и выше). С увеличением глубины его концентрация падает вследствие ослабления фотосинтеза и потребления на окисление органических веществ и дыхание водных организмов, а на некоторых глубинах в верхнем слое его образование и расход примерно одинаковы. Поэтому эти глубины называют слоями компенсации, которые перемещаются по вертикали в зависимости от физико-химических, гидробиологических условий и подводной освещенности; например, зимой они лежат ближе к поверхности. В целом с глубиной дефицит кислорода увеличивается. Растворенный кислород проникает в глубинные слои исключительно за счет вертикальных циркуляций и течений. В некоторых случаях, например при нарушении вертикальной циркуляции или наличии большого количества легко окисляющихся органических веществ, концентрация растворенного кислорода может снизиться до нуля. В таких условиях начинают протекать восстановительные процессы с образованием сероводорода, как это, например, имеет место в Черном море на глубинах ниже 200 м.
В прибрежных водах значительный дефицит кислорода часто связан с их загрязнением органическими веществами (нефтепродуктами, детергентами и др.).
Из вышесказанного ясно, что определение концентрации кислорода в морской воде имеет громадное значение при изучении гидрологического и гидрохимического режимов морей и океанов.
В настоящем "Руководстве" описан модифицированный метод Винклера.
1. Сущность метода
Метод основан на окислении кислородом двухвалентного марганца до нерастворимого в воде бурого гидрата четырехвалентного марганца, который, взаимодействуя в кислой среде с ионами иода, окисляет их до свободного иода, количественно определяемого титрованным раствором гипосульфита (тиосульфата) натрия:
Из уравнений видно, что количество выделившегося иода эквимольно количеству молекулярного кислорода. Минимально определяемая этим методом концентрация кислорода составляет 0,06 мл/л.
Данный метод применим только к морским водам, не содержащим окислителей (например, солей трехвалентного железа) и восстановителей (например, сероводорода). Первые завышают, а вторые занижают фактическое количество растворенного кислорода.
2. Средства измерений, оборудование, материалы и реактивы
Для выполнения анализа применяются:
мешалка магнитная - по ТУ 25-11-834;
бюретка автоматическая калиброванная на 25 мл - по ГОСТ 20292;
пипетки градуированные на 1; 2 и 5 мл - по ГОСТ 20292;
пипетка автоматическая, калиброванная на 15 мл - по ГОСТ 20292;
пипетка с чертой на 1 мл - по ГОСТ 20292;
колбы мерные, калиброванные на 0,5 и 1,0 л - по ГОСТ 1770;
цилиндры (мензурки) мерные на 0,1; 0,5 и 1,0 л - по ГОСТ 1770;
колбы конические на 0,1; 0,25; 0,5 и 3-5 л - по ГОСТ 25336;
стаканы фарфоровые на 0,5 и 1,0 л - по ГОСТ 9147;
склянки калиброванные для проб с притертыми пробками объемом до 125 мл - по ТУ 6-19-6;
склянки с резиновыми пробками на 0,25 и 0,5 л - по ТУ 6-19-6;
склянки с притертой пробкой и колпаком на 1,0 л - по ТУ 6-19-6;
склянка (бутыль) из темного стекла на 3-5 л - по ТУ 6-19-45;
бюкс диаметром 50 мм - по ГОСТ 25336;
вакуум-эксикатор среднего размера - по ГОСТ 6371;
стекла часовые - по ГОСТ 9284;
трубки осушительные - по ГОСТ 9964;
марганец хлористый, ч.д.а. - по ГОСТ 612 или
марганец сернокислый, ч.д.а. - по ГОСТ 435;
калий иодистый, х.ч.- по ГОСТ 4232 или
натрий иодистый, ч.д.а. - по ГОСТ 8422;
спирт этиловый ректификат высший сорт - по ГОСТ 18300;
калия гидроксид, о.с.ч. - по ОСТ 6-01-301 или
натрия гидроксид, х.ч. - по ГОСТ 4328;
калия иодат, х.ч. - по ГОСТ 4202 или
калия бииодат, х.ч. - по ГОСТ 8504;
кислота серная, х.ч. - по ГОСТ 4204;
крахмал растворимый - по ГОСТ 10163;
натрий серноватистокислый 5-водный, ч.д.а. - по СТ СЭВ 223.
3. Отбор проб
Проба для определения кислорода должна быть первой, взятой из батометра. Для этого после ополаскивания водой из батометра кислородной склянки вместе с резиновой трубкой в свободный конец последней вставляют стеклянную трубку длиной 10 см и опускают ее на дно кислородной склянки. Воду наливают с умеренной скоростью во избежание образования воздушных пузырьков и один объем склянки переливают через ее горло после заполнения. Не закрывая крана батометра, осторожно вынимают трубку из склянки и только тогда закрывают кран. Склянка должна быть заполнена до краев и не иметь пузырьков воздуха на стенках.
4. Подготовка к анализу
4.1. Методы приготовления реактивов для проведения анализа
4.1.1. Раствор хлористого (или сернокислого) марганца готовят растворением 250 г соли в дистиллированной воде в мерной колбе на 0,5 л.
4.1.2. Для приготовления щелочного раствора иодистого калия (или натрия) иодиды предварительно необходимо очистить от свободного иода, для чего их промывают охлажденным примерно до 5 °С спиртом-ректификатом на фильтровальной воронке при перемешивании стеклянной палочкой до появления почти бесцветной порции промывного спирта. Промытую соль сушат в темноте между листами фильтровальной бумаги в течение суток и хранят в хорошо закрытых банках (склянках) из темного стекла.
Затем готовят:
б) водный раствор гидроксида калия (или гидроксида натрия) растворением 490 г КОН (или 350 г NaOH) соответственно в 360 и 340 мл дистиллированной воды. Взвешивать щелочи следует в фарфоровом стакане (или кружке), куда при помешивании приливают воду.
Полученные растворы иодида и щелочи с любым катионом смешивают и доводят их объем дистиллированной водой до одного литра в мерной колбе. Полученный раствор хранят в склянке с резиновой пробкой.
4.1.3. Растворы иодата калия или бииодата калия готовят растворением высушенных при 40 °С до постоянной массы и выдержанных в вакуум-эксикаторе в течение трех суток соответственно 0,7134 и 0,6500 г солей в дистиллированной воде в литровой мерной колбе примерно при 20 °С.
Если температура помещения отличается от указанного значения на несколько градусов, то мерную колбу с недоведенным до метки раствором выдерживают час в термостате или в сосуде с водой при 20 °С и затем раствор доводят до метки дистиллированной водой.
4.1.4. Раствор серной кислоты 1:4 готовят приливанием небольшими порциями одного объема концентрированной серной кислоты плотностью 1,84 к четырем объемам дистиллированной воды в фарфоровом стакане при помешивании.
4.1.5. Для приготовления раствора крахмала 0,5%-ного, 0,5 г препарата "крахмала растворимого" встряхивают в 15-20 мл дистиллированной воды. Полученную взвесь постепенно вливают в 85-90 мл кипящей воды и кипятят 1-3 мин до просветления раствора. Его консервируют добавлением 1-2 капель хлороформа.
________________
4.2. Определение поправочного коэффициента к молярности раствора гипосульфита натрия
Ввиду неустойчивости 0,02 моль/л раствора гипосульфита натрия необходимо периодически определять поправочный коэффициент к его нормальности. Это следует делать ежедневно перед началом титрования при непрерывной работе и перед титрованием каждой серии проб при длительных перерывах.
Поправочный коэффициент находят при титровании ионов иодата (или бииодата) в кислом растворе:
Следовательно, один моль иодата эквивалентен шести молям тиосульфата.
В коническую колбу после растворения 1 г KI в 40-50 мл дистиллированной воды вносят 2 мл серной кислоты. Затем автоматической калиброванной пипеткой приливают 15 мл раствора иодата калия концентрацией 0,0033 моль/л (или биодата калия концентрацией 0,0017 моль/л), колбу закрывают, осторожно перемешивают (лучше всего с помощью магнитной мешалки) и после выдерживания раствора в течение минуты приступают к титрованию.
До появления светло-желтой окраски раствора титрование проводят без индикатора, после чего прибавляют 1 мл раствора крахмала и 50 мл дистиллированной воды и продолжают титрование до полного обесцвечивания титруемой жидкости. Опыт повторяют 2-3 раза и, если расхождение в отсчетах бюретки не превышает 0,01 мл, берут среднее арифметическое в качестве конечного результата.
Поправочный коэффициент к нормальности раствора тиосульфата натрия вычисляют по формуле
5. Проведение анализа
Титрование проб с зафиксированным кислородом можно начинать только после того, как отстоявшийся осадок будет занимать менее половины высоты кислородной склянки. Склянку открывают, вводят пипеткой 2 мл серной кислоты, не касаясь и не взмучивая осадка, и вновь закрывают. Содержимое склянки перемешивают до полного растворения осадка. В таком виде пробу можно хранить в темном месте не более 1 ч.
Содержимое склянки количественно переносят в коническую колбу (обязательно сполоснуть склянку небольшим количеством профильтрованной морской или дистиллированной воды и прилить ее к пробе) и титруют стандартным раствором тиосульфата натрия так же, как и при определении поправочного коэффициента к его нормальности.
6. Обработка результатов анализа
Концентрацию кислорода вычисляют:
1) в мл/л по формуле
Объем кислорода необходимо приводить к температуре 0 °С и давлению 760 мм рт.ст.
2) в процентах состояния насыщения, т.е. процентном отношении найденной концентрации кислорода при определенной солености и температуре in situ к максимальной концентрации при той же солености, температуре и 760 мм рт.ст.:
7. Числовые значения показателей погрешности MBИ
На основании метрологической аттестации, проведенной ВНИИАСМ-НПО "Исари" Госстандарта СССР с 1.09 по 25.12.87 (табл.11) настоящая методика определения кислорода в морской воде допущена к применению в организациях Росгидромета.
Таблица 11
Результаты метрологической аттестации
|
|
|
|
Диапазон концентраций растворенного кислорода, мл/л | Показатель воспроизводимости ( ), % | Показатель правильности ( ), % | Показатель погрешности МВИ, суммарная погрешность ( ), % |
От 0,1 мл/л до состояния насыщения | 2,22 | 2,5 | 3,4 |
8. Требования к квалификации аналитика
Определение растворенного в воде кислорода может выполнять инженер или техник-химик со средним специальным образованием, имеющий опыт работы с химическими препаратами.
9. Нормы затрат рабочего времени на анализ
Для анализа 100 проб требуется 22 чел.-ч, в том числе:
на взятие проб из батометра - 2 чел.-ч;
на приготовление растворов реактивов - 3,5 чел.-ч;
на подготовку посуды - 3,2 чел.-ч;
на выполнение измерений - 7,5 чел.-ч;
на выполнение расчетов - 5,8 чел.-ч.
СПИСОК ЛИТЕРАТУРЫ
1. Кириллова Е.П. К вопросу о методике определения растворенного в морской воде кислорода. - Труды ГОИН, 1975, вып.127, с.106-113.
2. Методы гидрохимических исследований океана. - М.: Наука, 1978, с.133-150.
3. Океанографические таблицы. - Л.: Гидрометеоиздат, 1975.
4. Руководство по методам химического анализа морских вод. - Л.: Гидрометеоиздат, 1977, с.48-53.
5. Таблицы растворимости кислорода в морской воде. - Л.: Гидрометеоиздат, 1976. - 165 с.
6. Chemical methods for use in marine environmental monitoring/IOC, Manuals and guides. No 12. - UNESCO, 1983, p.6-10.
РАСТВОРЕННЫЙ КИСЛОРОД В ПРИСУТСТВИИ СЕРОВОДОРОДА*
________________
* Настоящая методика метрологически не аттестована.
1. Сущность метода
В присутствии сероводорода описанный выше иодометрический метод определения кислорода дает значительные погрешности вследствие того, что присутствующий сероводород вступает во взаимодействие с иодом. Поэтому результаты получаются заниженные, а иногда анализ показывает полное отсутствие кислорода, когда в действительности последний еще в определимом количестве находится в воде.
Одновременно со свободным сероводородом при обработке пробы воды хлорной ртутью удаляются и другие восстановленные формы серы, также мешающие точному определению растворенного кислорода, например соли серноватистой кислоты, присутствующие в содержащей свободный сероводород морской воде:
Хлорная ртуть должна вводиться в исследуемую пробу морской воды в избыточном по отношению к растворенному в воде сероводороду количестве. В противном случае образуется сернистая ртуть HgS, не связанная в комплекс с хлорной ртутью. Сернистая ртуть, реагируя со свободным иодом
обусловливает заниженные результаты определения растворенного кислорода. Избыток же хлорной ртути, вводимой в пробу, дальнейшему ходу реакций при определении кислорода не мешает. Хлорная ртуть, оставшаяся в избытке после связывания сероводорода и других сернистых соединений, будет вступать в дальнейшем в реакцию с иодистым калием, который при определении кислорода вводится в избытке в пробу при фиксации кислорода. Вначале образуется иодная ртуть:
Иодная ртуть реагирует с избытком иодистого калия с образованием комплексной соли:
Комплексное соединение иодной ртути и калия не мешает определению кислорода.
После осаждения сероводорода в виде двойной соли ртути проба обрабатывается, как описано при определении кислорода, в бессероводородной воде.
2. Средства измерений, оборудование, материалы и реактивы
При определении растворенного кислорода в присутствии сероводорода необходимы все те приборы, посуда и реактивы, которые применяются при определении кислорода в воде, не содержащей сероводород (см. п. "Растворенный кислород"), и кроме того:
ртуть хлорная любой квалификации;
натрий хлористый, х.ч. - по ГОСТ 4233.
3. Отбор проб, осаждение сероводорода и фиксация кислорода
Перед отбором пробы и дальнейшей ее обработкой для осаждения сероводорода необходимо убедиться в его наличии в исследуемой пробе путем качественной реакции на сероводород.
Качественная реакция на сероводород производится при помощи свинцовой бумажки, которая при смачивании водой, содержащей сероводород, темнеет, принимая окраску в зависимости от количества сероводорода от желтой до бурой и черной.
Убедившись в наличии сероводорода, приступают к отбору пробы и дальнейшей ее обработке.
После прибавления раствора хлорной ртути склянку закрывают пробкой так, чтобы под пробкой не оставалось пузырьков воздуха, затем склянку энергично, полукруговыми движениями кисти руки, переворачивают для перемешивания раствора соли ртути с водой.
После перемешивания склянку осторожно открывают и тотчас же последовательно приливают в нее по 1 мл раствора соли марганца и щелочного раствора иодистого калия, как это описано в гл. "Растворенный кислород". После приливания реактивов для фиксации кислорода склянку вновь закрывают пробкой и, придерживая последнюю, энергично перемешивают пробу с реактивами. Плотно закрытые склянки с пробами отстаиваются в темном месте. После того как осадок отстоялся и будет занимать не более половины высоты склянки, приступают к дальнейшей обработке пробы.
4. Подготовка к анализу
4.1. Методы приготовления реактивов для проведения анализа
Все растворы реактивов готовят так же, как указано в гл. "Растворенный кислород".
Кроме того, готовят раствор хлорной ртути в хлористом натрии. Для этого растворяют 0,25 г хлорной ртути и 20 г хлористого натрия в 100 мл дистиллированной воды.
Хлористый натрий понижает растворимость кислорода воздуха в растворе хлорной ртути, что уменьшает возможность внесения в пробу кислорода с реактивом. Кроме того, большая плотность вводимого в пробу воды раствора хлорной ртути обеспечивает лучшее перемешивание и распределение прибавленного реактива во всем объеме пробы.
4.2. Меры предосторожности при работе с растворами хлорной ртути
Кристаллическая хлорная ртуть и ее растворы не должны храниться с другими реактивами. В береговой лаборатории эти препараты хранятся в сейфе; в судовой - в особом ящике лабораторного стола под замком.
Оставлять препараты хлорной ртути после работы на столах с общими реактивами или в незапертом ящике категорически воспрещается. На склянках с хлорной ртутью и с ее растворами должна быть особая этикетка с четкой надписью тушью "Яд".
5. Проведение анализа
Дальнейшая обработка проб производится, как в случае определения кислорода в пробах, не содержащих сероводород. Так как в пробах, содержащих сероводород, концентрация кислорода обычно невелика, то крахмал рекомендуется добавлять непосредственно перед началом титрования.
Оставлять пробы не оттитрованными более трех часов не рекомендуется.
6. Обработка результатов анализа
Вычисление результатов определения кислорода в присутствии сероводорода производится так же, как при обычных определениях, с той лишь разницей, что из объема склянки вычитается объем не только прибавленных для фиксации реактивов, но и объем прибавленного раствора хлорной ртути. Форма записи результатов определения остается такой же, как и при обычном определении кислорода, но в примечаниях должна быть оговорка: "проба содержит сероводород".
7. Требования к квалификации аналитика
Определение растворенного в воде кислорода может выполнять инженер или техник-химик со средним специальным образованием, имеющий опыт работы с химическими препаратами.
8. Нормы затрат рабочего времени на анализ
Для анализа 100 проб требуется 22 чел.-ч, в том числе:
на взятие проб из батометра - 2 чел.-ч;
на приготовление растворов реактивов - 3,5 чел.-ч;
на подготовку посуды - 3,2 чел.-ч;
на выполнение измерений - 7,5 чел.-ч;
на выполнение расчетов - 5,8 чел.-ч.
СПИСОК ЛИТЕРАТУРЫ
1. Методы гидрохимических исследований океана. - М.: Наука, 1978, с.150-153.
2. Руководство по методам химического анализа морских вод. - Л.: Гидрометеоиздат, 1977, с.63-66.
СЕРОВОДОРОД
Сероводород и сернистые соединения, сульфиды и другие восстановленные формы серы не являются типичными и постоянными компонентами морских вод.
Однако при определенных условиях сероводород и сульфиды могут накапливаться в глубоких слоях моря в значительных количествах. Области с достаточно высоким содержанием сероводорода могут временами образовываться даже на небольших глубинах. Но и временное накопление сероводорода в море нежелательно, так как его появление вызывает гибель морской фауны. Вместе с тем, присутствие сероводорода в морской воде служит характерным показателем определенных гидрологических условий, а также интенсивного потребления растворенного кислорода и наличия большого количества легко окисляющихся веществ различного происхождения.
Основным источником возникновения сероводорода в море служит биохимическое восстановление растворенных сульфатов (процесс десульфатации). Десульфатация в море вызывается жизнедеятельностью особого вида анаэробных десульфатирующих бактерий, которые восстанавливают сульфаты в сульфиды, последние же разлагаются растворенной угольной кислотой до сероводорода.
Схематически этот процесс можно представить следующим образом:
В действительности указанный процесс протекает более сложно, и в сероводородной зоне присутствует не только свободный сероводород, но и другие формы продуктов восстановления сульфатов (сульфиды, гидросульфиты, гипосульфиты и др.).
В гидрохимической практике содержание восстановленных форм соединений серы принято выражать в эквиваленте сероводорода. Лишь в особых специально поставленных исследованиях различные восстановленные формы серы определяются раздельно. Эти определения здесь не рассматриваются.
Вторым источником возникновения сероводорода в море служит анаэробный распад богатых серой белковых органических остатков отмерших организмов. Содержащие серу белки, распадаясь в присутствии достаточного количества растворенного кислорода, окисляются, и содержащаяся в них сера переходит в сульфат-ион. В анаэробных условиях распад серосодержащих белковых веществ ведет к образованию минеральных форм серы, т.е. сероводорода и сульфидов.
Случаи временного возникновения анаэробных условий и связанного с ними накопления сероводорода наблюдаются в Балтийском и Азовском морях, а также в некоторых губах и заливах других морей.
Классическим примером морского бассейна, зараженного сероводородом, является Черное море, где лишь верхний сравнительно тонкий поверхностный слой свободен от сероводорода.
Возникающие в анаэробных условиях сероводород и сульфиды легко окисляются при поступлении растворенного кислорода, например при ветровом перемешивании верхних, хорошо аэрированных слоев воды с глубинными водами, зараженными сероводородом.
Поскольку даже временное накопление сероводорода и сернистых соединений в море имеет существенное значение как показатель загрязнения вод и возможности возникновения заморов морской фауны, наблюдения за его появлением совершенно необходимы при изучении гидрохимического режима моря.
1. Объемно-аналитический метод*
________________
* Настоящая методика метрологически не аттестована.
1.1. Сущность метода анализа
До настоящего времени вопрос о равновесии системы сероводорода и о формах сероводорода в морской воде исследован далеко не достаточно.
Используемый в настоящее время в практике морских исследований метод определения растворенного сероводорода в действительности позволяет определить суммарное содержание сернистых соединений (восстановленные формы серы), выражаемое в эквиваленте сероводорода [1, 2].
Метод количественного определения сероводорода основан на реакции окисления его иодом:
Для определения сероводорода к точно отмеренному раствору иода известной концентрации, подкисленному соляной кислотой, прибавляют определенное количество исследуемой морской воды. Раствор иода берется в избытке по отношению к ожидаемому содержанию сероводорода. Количество иода, израсходованного на окисление сероводорода, может быть легко определено по разности путем обратного титрования оставшегося иода раствором гипосульфита. Разница между количеством раствора гипосульфита, соответствующим всему количеству взятого для анализа иода, и количеством этого же раствора, затраченным на титрование избытка иода в пробе морской воды, будет эквивалентна содержанию сероводорода в исследуемой пробе.
Реакции между сероводородом и иодом и между иодом и гипосульфитом можно представить следующими уравнениями
В описываемом методе ошибки обусловлены следующими факторами: во-первых, растворы иода обладают значительной степенью летучести, их не следует оставлять открытыми на воздухе, а необходимо консервировать. Летучесть раствора иода снижают добавлением в него избытка иодида. При этом образуется трииодид-ион:
Такие растворы уже значительно менее летучи. Если титрование происходит при температуре ниже 25 °С и содержание иодида в растворе иода составляет примерно 4%, то потеря иода в таких условиях ничтожно мала.
Во-вторых, иодиды в кислой среде окисляются кислородом воздуха:
Для того чтобы избежать этой ошибки, следует, по возможности, подкислять раствор иода, содержащий иодистый калий непосредственно перед самым определением сероводорода и держать раствор в атмосфере углекислого газа.
1.2. Средства измерений, оборудование, материалы и реактивы
Для выполнения анализа применяются:
бюретка для титрования - по ГОСТ 20292;
пипетки 2-го класса точности на 1, 2, 5 и 10 мл - по ГОСТ 20292;
колбы мерные 2-го класса точности на 200 и 250 мл - по ГОСТ 1770;
колбы конические на 500 мл - по ГОСТ 10394;
трубки стеклянные - по ТУ 25-11-1045;
трубки резиновые - по ГОСТ 5496;
склянки на 500-2000 мл - по ТУ 6-19-6;
баллон со сжатой углекислотой с редукционным вентилем (возможно использование других источников углекислоты);
калий иодистый, х.ч. - по ГОСТ 4232;
иод кристаллический, ч. - по ГОСТ 4159;
натрий серноватистокислый, ч.д.а. - по СТ СЭВ 223;
калий двухромовокислый, х.ч. - по ГОСТ 4220;
калий иодноватокислый, х.ч. - по ГОСТ 4202;
кислота соляная, х.ч. - по ГОСТ 3118;
крахмал, ч. - по ГОСТ 10163;
натрий углекислый кислый, ч.д.а. - по ГОСТ 4201.
1.3. Отбор проб и фиксация растворенного сероводорода
Заблаговременно до подъема на борт батометров с водой, в которой предполагается произвести определение сероводорода, приступают к подготовке колб для взятия проб воды.
По числу батометров, из которых будут взяты пробы на определение сероводорода, мерные колбы заполняют углекислотой по одному из способов, описанных ниже. После заполнения колб углекислотой калиброванной пипеткой отмеривают в каждую колбу раствор иода в иодистом калии концентрацией 0,01 моль/л. Раствор иода добавляют в избыточном количестве по отношению к растворенному в морской воде сероводороду. Например, для глубинных вод Среднего и Южного Каспия обычно бывает достаточно 1 мл раствора иода, для черноморской воды на глубине до 1000 м - 5 мл, ниже 1000 м - 10 мл. Колбы закрывают пробками до наполнения их морской водой. Колбы с раствором иода следует оберегать от нагревания и солнечного света.
Пробы для определения сероводорода отбирают после взятия проб для определения рН и содержания кислорода. Для этого резиновый шланг батометра промывают содержащейся в нем водой. При этом стеклянную трубку поднимают кверху для того, чтобы вытеснить пузырьки воздуха, которые иногда пристают к стенкам трубки или задерживаются в месте присоединения резинового шланга к крану батометра. После этого, не закрывая крана батометра, шланг зажимают пальцами, а стеклянную трубку, которой шланг оканчивается, опускают в колбу с раствором иода, непосредственно перед этим открытую. По мере заполнения колбы водой трубку постепенно поднимают и одновременно уменьшают скорость поступления воды, сжимая резиновый шланг пальцами; прекращают доступ воды, когда уровень точно достигнет метки на шейке колбы. В этот момент трубка наполнения должна быть выше черты мерной колбы. После заполнения колбу закрывают пробкой и переносят для дальнейшей обработки к титровальной установке. Жидкость в колбе должна сохранить желтый цвет иода; полное обесцвечивание жидкости по заполнении колбы указывает на недостаточное количество иода, взятого для определения. В этом случае проба должна быть взята повторно с большим количеством раствора иода в пробе.
1.4. Подготовка к анализу
1.4.1. Требования к посуде, применяемой в анализе
При определении сероводорода применяют тот же раствор гипосульфита (0,02 моль/л), что и при определении кислорода, поэтому следует пользоваться одной и той же бюреткой и титровальной установкой.
Для определения титра гипосульфита применяют ту же пипетку, что и при определении кислорода. Кроме того, необходимо иметь калиброванные пипетки для раствора иода. Мерные колбы используют с пришлифованными стеклянными или парафинированными корковыми пробками, свободно привязанными к каждой колбе. Колбы следует подобрать с приблизительно равными диаметрами шеек. Число колб зависит от числа проб морской воды, отбираемых одновременно для определения сероводорода. Все колбы должны быть пронумерованы.
1.4.2. Методы приготовления реактивов для проведения анализа
1. Раствор иода в иодистом калии концентрацией 0,01 моль/л готовят путем растворения 40 г химически чистого иодистого калия в 50 мл дистиллированной воды. В полученный раствор добавляют 2,54 г чистого кристаллического иода. По растворении кристаллов иода общий объем раствора доводят дистиллированной водой до литра. Иодистый калий должен быть испытан на чистоту по методу, описанному в гл. "Растворенный кислород". Раствор иода хранят в склянке оранжевого стекла или оклеенной черной фотографической бумагой, с хорошо притертой пробкой.
Применение склянок с резиновыми пробками для хранения раствора иода не допускается.
2. Раствор гипосульфита концентрацией 0,02 моль/л готовят как описано в гл."Растворенный кислород".
3. Стандартные растворы двухромовокислого или иодновато-кислого калия применяют те же, что и при определении кислорода.
4. Иодистый калий (проверенный на чистоту, см. гл. "Растворенный кислород").
5. Раствор соляной кислоты (1:1) готовят смешением одного объема химически чистой концентрированной соляной кислоты (плотность 1,19) с равным объемом дистиллированной воды (лить кислоту в воду, но не наоборот!).
6. Раствор крахмала применяют тот же, что и при определении кислорода.
7. Навески по 0,2 г бикарбоната натрия готовят заблаговременно взвешиванием 0,2 г соли на технических или ручных аптекарских весах и помещают в небольшие конвертики из кальки. Навески бикарбоната необходимы в том случае, если нет возможности пользоваться баллоном со сжатой углекислотой.
1.4.3. Определение поправки молярности раствора гипосульфита
Перед определением сероводорода находят поправочный коэффициент к концентрации 0,02 моль/л раствора гипосульфита и соотношению этого раствора с раствором иода (0,02 моль/л). Определение производят так же, как описано в гл. "Растворенный кислород". Результаты определения титра раствора гипосульфита со всеми поправками заносят в журнал.
1.4.4. Определение соотношения между раствором иода и раствором гипосульфита
Определение производят в тех же условиях, что и определение сероводорода в морской воде.
Мерную колбу (200 или 250 мл) заполняют углекислотой одним из двух следующих способов:
1. Если имеется баллон со сжатой газообразной углекислотой, то чистую, сполоснутую дистиллированной водой колбу наполняют в течение нескольких секунд углекислотой из баллона. Наполнение производят через стеклянную, опущенную до дна колбы трубку, соединенную с редукционным вентилем баллона резиновым шлангом. Даже при слабой струе газа для наполнения колбы углекислотой достаточно нескольких секунд.
2. Если для заполнения колб углекислотой применяют навески бикарбоната натрия, то поступают следующим образом: в чистую, сполоснутую дистиллированной водой колбу добавляют 2 мл соляной кислоты (1:1), затем всыпают 0,2 г бикарбоната натрия. По растворении навески колба наполняется углекислотой, выделившейся при разложении бикарбоната натрия соляной кислотой.
После заполнения колбы углекислотой в нее добавляют 10 мл раствора иода (0,02 моль/л) и, если наполнение колбы углекислотой производилось из баллона, прибавляют 1 мл разведенной (1:1) соляной кислоты. Колбу тотчас закрывают пробкой. Промывалку, наполненную поверхностной бессероводородной морской водой, соединяют резиновым шлангом со стеклянной трубкой. Наклоняя промывалку с водой, заполняют шланг и трубку водой так, чтобы в них не оставалось пузырьков воздуха. Затем, придерживая резиновый шланг пальцами, опускают стеклянную трубку в колбу и, покачивая колбу, постепенно заполняют ее водой. По мере заполнения колбы стеклянную трубку поднимают, одновременно уменьшают скорость поступления воды, сжимая шланг пальцами, и осторожно доводят объем воды до метки колбы. Колбу после заполнения закрывают стеклянной пробкой и содержимое перемешивают перевертыванием колбы (придерживая пробку). Содержимое мерной колбы переливают в коническую колбу, и иод титруют гипосульфитом, как это описано в гл. "Растворенный кислород". При окислении сероводорода иодом выделяется тонкодисперсная сера, титруемая жидкость опалесцирует, принимает слегка желтоватую окраску, поэтому во избежании визуальных ошибок крахмал следует добавлять при отчетливом желтом цвете титруемой жидкости. В противном случае проба может быть легко перетитрована.
Таблица 12
|
|
|
Установка титра раствора гипосульфита: дата 5.01.89 г., время 11.00, стандарт KIO . Молярная концентрация стандарта 0,02 моль/л. Объем пипетки (марка) 10,00 мл, поправка 0,03, истинный объем 10,03. Расход гипосульфита при установке титра на 10,03 мл стандарта - .... | ||
Поправка раствора гипосульфита =0,985 | Отсчеты | Среднее значение |
| I. 10, 14 | отсчет ... 10,16 |
| II. 10, 18 | поправка ... 0,02 |
|
| исправленный отсчет ... 10,18 |
| ||
Определение соотношения растворов гипосульфита и иода | ||
Отсчет по бюретке ... 9,95 | ||
Поправка ... 0,03 | ||
Исправленный отсчет ... 9,98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
N п/п | N стан- ции | Дата и время | Гори- зонт, м | N кол- бы | Объем колбы, | Коэф- фи- циент | Отсчет бюрет- ки | Поправ- ка на бюрет- ку | Исправ- ленный отсчет | [H S] мл/л | |||
1 | 26 | 5.01.89 г. 9.00 | 1000 |
| 250 | 237,97 | 0,929 | 6,83 | +0,03 | 6,86 | 3,12 | 0,915 | 2,85 |
Если титруемая жидкость не посинела после сливания раствора, которым ополаскивалась мерная колба, то это указывает на то, что проба перетитрована.
Всю операцию по определению отношения раствора иода и гипосульфита производят дважды. Расхождения результатов параллельных определений не должны превышать 0,05-0,1 мл.
1.5. Проведение анализа
Титрование проб следует производить непосредственно после взятия пробы. Длительное стояние проб ведет к потерям иода и дает значительные погрешности.
Для титрования пробу переливают из мерной колбы в коническую и титруют раствором гипосульфита, как это описано выше, при определении соотношения растворов иода и гипосульфита. Результат отсчета по шкале бюретки записывают в журнал (см. табл.12).
1.6. Обработка результатов
Из уравнений реакции между иодом и сероводородом (2) и между иодом и гипосульфитом (3) следует, что 1 г/моль сероводорода соответствует 2 г/моль гипосульфита. Относительная молекулярная масса сероводорода равна 34,08, а масса 1 мл при 0 °С и 760 мм рт.ст. составляет 1,5393 мг. Исходя из этих соотношений, содержание сероводорода (мл/л) вычисляют по формуле
Если при определении всегда применяется раствор гипосульфита концентрацией 0,02 моль/л, то формула (4) может быть упрощена. Поскольку
тогда
Пример.
2. При нахождении соотношения между растворами иода и гипосульфита взято 10,03 мл раствора иода и 2 мл раствора соляной кислоты. На титрование этого объема иода израсходовано 9,98 мл (с учетом поправки на калибрацию бюретки) раствора гипосульфита концентрацией 0,02 моль/л. Для определения применялась колба емкостью 250 мл.
3. При определении сероводорода в пробе взяты те же объемы иода и соляной кислоты. На титрование иода, оставшегося после окисления сероводорода, израсходовано 6,86 мл раствора гипосульфита концентрацией 0,02 моль/л (с учетом поправки на калибрацию бюретки).
4. Подставляя эти значения в формулу (5), находим:
5. Если предварительно вычислено значение
то содержание сероводорода составит
Очевидно, что вычисление по формуле (8) проще и занимает меньше времени, что имеет существенное значение при обработке результатов наблюдений в экспедиционных условиях - на борту судна.
Содержание сероводорода вычисляют с точностью до двух десятичных знаков. Результаты определений и вычислений заносят в журнал (см. табл.12).
1.7. Требования к квалификации аналитика
Определения сероводорода может проводить техник или старший техник-химик, знакомый с основами объемного химического анализа.
1.8. Нормы затрат рабочего времени на анализ
Для анализа 100 проб требуется 22 чел. - ч, в том числе:
на взятие проб из батометра - 2,0 чел.-ч;
на приготовление растворов реактивов - 3,5 чел.-ч;
на подготовку посуды - 3,2 чел.-ч;
на выполнение измерений - 7,5 чел.-ч;
на выполнение расчетов - 5,8 чел.-ч.
2. Колориметрический метод*
________________
* Настоящая методика метрологически не аттестована.
2.1. Сущность метода анализа
Метод основан на реакции сульфид-ионов подкисленной пробы морской воды с N, N-диметил-n-фенилендиамином (диамином) в присутствии ионов железа (III) как катализатора. В процессе реакций окисления и замещения происходит количественное включение сульфидной серы в гетероцикл красителя - метиленового синего. Полученные окрашенные пробы колориметрируют относительно холостой пробы при длине волны 670 нм в 1-, 5- или 10-сантиметровых кюветах, в зависимости от концентраций сероводорода [1, 3, 4].
2.2. Средства измерений, оборудование, материалы и реактивы
Для выполнения анализа применяются:
спектрофотометр, позволяющий производить измерения при длине волны 670 нм - по ТУ 3-3-1314;
или фотометр с фильтром, близким к 670 нм - по ТУ 3-3-748;
батометр пластмассовый или стеклянный ГР-18 - по ТУ 25-04-2507;
пипетки автоматические - по ГОСТ 20292;
цилиндры Несслера - по ТУ 25-11-1023;
колба круглодонная одногорлая на 1 л - по ГОСТ 10394;
колбы мерные на 0,5 и 1,0 л - по ГОСТ 1770;
бюксы диаметром 50-80 мм - по ГОСТ 7148;
плитка электрическая бытовая - по ТУ 92-208;
пипетки с делениями - по ГОСТ 20292;
N, N-диметил-n-фенилендиамин дигидрохлорид, ч.д.а. - по ТУ 6-09-1903;
железо хлорное, ч.д.а. - по ГОСТ 4147;
кислота серная, х.ч. - по ГОСТ 4204;
натрий сернистый, ч.д.а. - по ГОСТ 2053;
натрий серноватистокислый, ч.д.а. - по СТ СЭВ 223;
калий иодноватокислый, х.ч. - по ГОСТ 4202;
калий иодистый, х.ч. - по ГОСТ 4232;
крахмал, ч. - по ГОСТ 10163;
спирт изобутиловый, ч. - по ГОСТ 6016;
спирт этиловый, х.ч. - по ТУ 6-09-1710;
кислота соляная, х.ч. - по ГОСТ 3118;
азот газообразный, ос.ч. - по ГОСТ 9293.
2.3. Отбор проб
Пробы морской воды на сероводород отбирают пластмассовым батометром сразу после отбора проб на кислород. Хранение проб не допускается.
2.4. Подготовка к анализу
2.4.1. Методы приготовления реактивов для проведения анализа
1. Раствор N, N-диметил-n-фенилендиамина готовят растворением 1 г реактива в 500 мл соляной кислоты концентрацией 6 моль/л.
3. Раствор хлорного железа готовят растворением 8 г соли в соляной кислоте концентрацией 6 моль/л с последующим доведением объема до 500 мл.
4. Бескислородную воду получают кипячением в течение 30 мин дистиллированной воды. В процессе кипячения через воду продувают газообразный азот. После охлаждения воду постоянно продувают азотом, в течение всего времени, пока вода необходима для приготовления градуировочных растворов.
5. Раствор серной кислоты (1:4) готовят добавлением 1 объема кислоты к 4 объемам воды.
8. Раствор тиосульфата натрия концентрацией 0,02 моль/л готовят растворением 5 г тиосульфата натрия в 1000 мл дистиллированной воды. Для стабилизации раствора добавляют 5 мл изобутилового спирта.
9. Раствор иодата калия готовят растворением 1,1891 г соли, высушенной в течение часа при 180 °С, в 1000 мл дистиллированной воды.
10. Иодистый калий очищают от свободного иода промыванием соли спиртом до появления бесцветной порции спирта.
11. Раствор крахмала готовят растворением 1 г крахмала в 100 мл дистиллированной воды.
2.4.2. Стандартизация раствора тиосульфата натрия
Вследствие неустойчивости раствора тиосульфата натрия необходимо периодически определять поправочный коэффициент для его концентрации.
В коническую колбу после растворения 1 г иодида калия в 40-50 мл дистиллированной воды вносят 2 мл серной кислоты. Затем пипеткой прибавляют 15 мл раствора иодата калия, концентрацией 0,02 моль/л, колбу закрывают, перемешивают и после выдерживания раствора в течение минуты приступают к титрованию. До появления светложелтой окраски раствора титрование проводят без индикатора, затем прибавляют 1 мл раствора крахмала и 50 мл дистиллированной воды и продолжают титрование до полного обесцвечивания раствора. Опыт повторяют 2-3 раза.
Поправочный коэффициент для концентрации раствора тиосульфата натрия вычисляют по формуле
2.4.3. Стандартизация рабочего раствора сульфида натрия
Операция проводится в течение нескольких минут после приготовления рабочего раствора и одновременно с приготовлением градуировочных растворов для фотометрирования.
В шесть колб с притертыми пробками приливают по 10 мл дистиллированной воды и добавляют по 1-2 г иодида калия. В каждую колбу добавляют 10,00 мл раствора иодата и 1,0 мл серной кислоты. Затем в три колбы вносят по 50 мл рабочего раствора сульфида, а в остальные - по 50 мл дистиллированной воды. Выдерживают все колбы в прохладном месте, а затем титруют содержимое колб раствором тиосульфата, используя в качестве индикатора крахмал.
Расчет проводят по формуле
Расхождение между результатами трех титрований не должно превышать 0,05 мл.
2.4.4. Фотометрирование градуировочных растворов
Из рабочего раствора готовят серию градуировочных растворов. Для этого в мерные колбы на 100 мл добавляют следующие объемы рабочего раствора: 0; 4; 8; 12; 16; 20 мл, получая таким образом растворы с концентрациями сульфид-иона 0,0; 6,3; 12,5; 18,7; 25,0 и 31,2 мкмоль/л, в том случае, если рабочий раствор сульфид-иона имеет концентрацию точно 0,156 мкмоль/мл. Поэтому полученные концентрации градуировочных растворов должны быть скорректированы с учетом истинной концентрации рабочего раствора сульфид-иона, определенной титрованием.
Затем колбы заполняют бескислородной водой до отметки 100 мл. С помощью автоматической пипетки в каждую колбу вносят по 1 мл раствора диамина и хлорного железа и содержимое тщательно перемешивают. Через 60 мин измеряют оптические плотности растворов относительно холостой пробы (бескислородная вода с реактивами) при длине волны 670 нм в 1-, 5- или 10 сантиметровых кюветах. По полученным результатам строят градуировочные графики для каждого вида кювет. Градуировочный график представляет собой прямую линию, проходящую через начало координат.
При анализе более высоких концентраций начиная с 40-50 мкмоль/л градуировочный график отклоняется от прямой. Точка отклонения графика от прямой зависит от качества раствора N, N-диметил-n-фенилендиамина.
2.5. Проведение анализа
Пробы на сероводород отбираются аналогично пробам на кислород. Сразу после отбора в пробы добавляют по 1 мл растворов диамина и хлорного железа - предпочтительно автоматическими пипетками. Закрывают склянки пробками и тщательно перемешивают растворы. Голубая окраска начинает проявляться через несколько минут, и к фотометрированию проб можно приступить через 30 мин. Однако, если пробы содержат высокие концентрации сероводорода, то для полного окрашивания необходимо 60 мин. Окраска устойчива по меньшей мере в течение 24 ч, ее интенсивность измеряют относительно дистиллированной воды (или, если необходимо при низких концентрациях сероводорода, относительно фона реактивов) при длине волны 670 нм, используя 1-, 5- или 10-сантиметровые кюветы.
Если пробы содержат более 100 мкмоль/л сероводорода, их следует разбавить перед анализом. При этом нужный объем пробы помещают в мерную колбу, содержащую бескислородную воду. Носик пипетки следует погрузить ниже поверхности воды. Затем объем доводят до метки бескислородной водой. Вводят необходимые реактивы и пробу тщательно перемешивают. При расчете результатов анализа необходимо учесть фактор разбавления.
Иногда может возникнуть необходимость компенсировать оптическую плотность применяемых реактивов. Фон реактивов получают, добавляя их к фильтрованной поверхностной морской воде и измеряя оптическую плотность относительно той же морской воды без реактивов. Полученные значения не должны превышать 0,5 в 10-сантиметровой кювете (желательно, чтобы они были ниже 0,25). Обычно фон реактивов незначителен, даже если используют окрашенный раствор диамина.
Примечание. Трудно приготовить стандартный раствор сульфида с достаточной степенью точности. Таким образом в анализе появляется систематическая ошибка. В описываемом методе эта ошибка ниже 2%.
2.6. Обработка результатов
Примечание. Трудно достать реактив диамина, который был бы в большей или меньшей степени окрашен. Однако это не влияет на результаты. Исследования, проведенные с коричневым реактивом диамина годичной давности, дали результаты, лишь незначительно отличающиеся от полученных со свежеприготовленным раствором диамина.
2.7. Требования к квалификации аналитика
Анализ может выполнять химик-аналитик, знакомый с основами объемного химического анализа и с правилами эксплуатации приборов, применяемых в данной методике.
2.8. Нормы затрат рабочего времени на анализ
Для анализа 100 проб требуется 22,2 чел.-ч, в том числе:
на взятие проб из батометра - 2,5 чел.-ч;
на подготовку посуды - 3,2 чел.-ч;
на приготовление растворов реактивов - 3,5 чел.-ч;
на подготовку спектрофотометра к работе - 1 чел.-ч;
на выполнение измерений - 10 чел.-ч;
на выполнение расчетов - 2 чел.-ч.
СПИСОК ЛИТЕРАТУРЫ
1. Методы гидрохимических исследований океана. - М.: Наука, 1978, с.153-163.
2. Руководство по методам химического анализа морских вод. - Л.: Гидрометеоиздат, 1977, с.54-63.
3. Chemical methods for use in marine environmental monitoring/IOC, Manuals and guides, No 12. - UNESCO, 1983, p.11-16.
4. Methоds of seawater analysis/Grasshoff K. et al. (Eds.). - Verlag Chemie, Weinheim, 1983, p.73-80.
ОБЩИЕ РЕКОМЕНДАЦИИ ПО ОПРЕДЕЛЕНИЮ БИОГЕННЫХ ВЕЩЕСТВ
ФОТОМЕТРИЧЕСКИМИ МЕТОДАМИ
Биогенные вещества (фосфаты, нитраты, нитриты, аммонийный азот, кремний) являются важнейшими ингредиентами природных вод. В устьевых областях рек в большинстве случаев наблюдаются повышенные концентрации этих веществ, что вызывает интенсивное развитие фитопланктона.
Для определения биогенных веществ в природных водах применяют фотометрические методы [1, 2]. Практика показывает, что при анализе распресненных вод морских устьевых областей рек с высоким содержанием взвешенных частиц минерального и органического происхождения, удовлетворительной воспроизводимости результатов определения биогенных веществ можно достигнуть только при условии предварительного фильтрования проб для отделения взвеси. В открытых частях эпиконтинентальных морей, где содержание взвешенных частиц незначительно, фильтрование проб можно не производить.
1. Средства измерения, оборудование, материалы и реактивы
1.1. При определении фосфатов и общего фосфора в распресненных водах любой солености, а также нитритов и нитратов в водах с соленостью до 7 ‰ применяются средства измерения, оборудование и материалы, указанные в [1] и [2].
1.2. При определении кремния и аммонийного азота в распресненных водах любой солености, а также нитритов и нитратов в водах с соленостью выше 7 ‰ применяются средства измерения, оборудование и материалы, указанные в [1].
2. Отбор проб
Пробы воды отбирают металлическими батометрами БМ-48 и сразу же фильтруют через ядерный или мебранный фильтр с размером пор 0,45 мкм с применением фильтровальной установки любого типа, например так, как указано в [1] в п."Определение хлорофилла и феофитина". Прозрачные пробы не фильтруют. Пробы воды не консервируют, анализ необходимо производить по возможности сразу после отбора. Допускаемые сроки хранения проб указаны в [1].
3. Подготовка к анализу и проведение анализа
3.1. Подготовительные операции и ход определения фосфатов и общего фосфора в распресненных водах любой солености, а также нитритов и нитратов в водах с соленостью до 7 ‰ производятся так, как указано в [1] и [2].
3.2. Подготовительные операции и определение кремния и аммонийного азота в распресненных водах любой солености, а также нитритов и нитратов в водах с соленостью выше 7 ‰ производятся так, как указано в [1].
4. Общие требования к обеспечению точности определений
При определении низких концентраций фосфатов и нитритов рекомендуется применять кюветы длиной 100 мм. Лучшие результаты могут быть достигнуты при применении спектрофотометра (типа СФ-4А, СФ-16, СФ-26, СФ-46, "Спекол" и др.). В судовых условиях удобнее пользоваться фотоэлектроколориметрами с цифровой шкалой (ФЭК, КФК) или спектрофометром "Спекол". Работать с кюветами меньшей длины можно, начиная с концентраций фосфатов выше 10 мкг/л, нитритов (и соответственно нитратов) - выше 4,9 мкг/л.
Несоблюдение указанных требований приводит к резкому ухудшению точности определений.
Кроме того, как указано выше, пробы распресненных вод, отобранных в устьевых областях рек, должны быть предварительно отфильтрованы для отделения взвеси.
СПИСОК ЛИТЕРАТУРЫ
1. Руководство по методам химического анализа морских вод. - Л.: Гидрометеоиздат, 1977. - 208 с.
2. Руководство по химическому анализу поверхностных вод суши. - Л.: Гидрометеоиздат, 1977. - 540 с.
ФОСФАТЫ
Фосфор относится к числу физиологически важных элементов, необходимых водорослям для построения клетки. Его содержание в морских водах является определяющим фактором их продуктивности. В ряде случаев чрезмерно высокие концентрации фосфора в морской воде могут служить показателем их загрязненности коммунально-бытовыми сточными водами.
Наиболее чувствительным методом определения фосфора в виде фосфата является колориметрический метод, основанный на образовании молибденовой гетерополисини. Этот метод широко применяется в различных областях науки и, в частности, в гидрохимии. Из форм неорганического фосфора, существующих в морской воде, данным методом можно определить лишь фосфор, входящий в состав солей ортофосфорной кислоты.
1. Сущность метода анализа
Хотя особенности химической реакции, положенной в основу метода, не вполне изучены, выполнение анализа не является сложным: раствор молибдата добавляют к фосфату при определенных кислотных условиях, при которых образуется желтая фосфорно-молибденовая гетерополикислота, восстанавливаемая затем до гетерополисини. В качестве восстановителей применяют двуххлористое олово, аскорбиновую кислоту, гидразинсульфат и другие соединения.
В настоящее время по рекомендации Международного совета по изучению морей во многих странах для определения фосфора применяется метод Морфи и Райли [5] с использованием аскорбиновой кислоты в качестве восстановителя. Окраска водных растворов восстановленных гетерополикислот при применении этого реагента несколько слабее, чем в случае восстановления двуххлористым оловом, однако они устойчивы в течение длительного времени и, кроме того, практически не зависят от температуры и солености морской воды. Для ускорения реакции в качестве катализатора применяется антимонилтартрат калия (калий сурьмяновиннокислый).
В основу настоящей прописи положен модифицированный метод Морфи и Райли [1-4].
При изучении баланса фосфора в море, а также при анализе проб морской воды с заметной взвесью, пробы необходимо отфильтровать так, как это описано в гл. "Общий фосфор".
2. Средства измерений, оборудование, материалы и реактивы
Для выполнения анализа применяются:
фотоэлектроколориметр (КФК-3, ФЭК-60) или спектрофотометр универсальный любого типа с кюветами длиной 100 мм;
штатив химический с зажимами - по ТУ 79 РСФСР 265;
набор сит на 0,25; 0,50; 0,75 и 1,00 м - по ТУ 25-06-1250;
шланг полиэтиленовый или полихлорвиниловый, внутренний диаметр 4-6 мм - по ТУ 64-2-253;
колбы мерные с притертыми пробками на 50 мл или цилиндры Неслера - по ГОСТ 1770;
колба мерная с притертой пробкой на 1 л - по ГОСТ 1770;
ионообменная колонка (длина 60 см, внутренний диаметр 16 мм);
микробюретка на 2-5 мл - по ГОСТ 20292;
пипетки градуированные на 1; 5 мл - по ГОСТ 20292;
цилиндры мерные на 250; 500 мл - по ГОСТ 1770;
стакан термостойкий на 500 мл - по ГОСТ 25336;
склянки для реактивов на 250; 500 и 1000 мл - по ТУ 25-11-1058;
калий фосфорнокислый однозамещенный, х.ч. - по ГОСТ 4198;
аммоний молибденовокислый, ч.д.а. - по ГОСТ 3765;
кислота серная, х.ч. - по ГОСТ 4204;
калий сурьмяновиннокислый, ч. - по ТУ 6-09-803;
кислота аскорбиновая, фарм. - по ГФ Х ст.6;
катионит КУ-2 - по ГОСТ 20298 (или другой равноценный);
анионит ЭДЭ-10п - по ГОСТ 13504 (или другой равноценный).
3. Отбор проб
Склянку для отбора проб заполняют морской водой из батометра после двухкратного ополаскивания этой водой склянки и пробки. Номер проб (склянок) записывают в журнал. Склянки переносят в лабораторию и воду оставляют стоять некоторое время для приобретения комнатной температуры.
Анализ проб должен производиться не позднее шести часов после отбора, так как при более длительном хранении возможен распад органического вещества планктона и переход органического фосфора в минеральный, что может вызвать значительные погрешности.
4. Подготовка к анализу
4.1. Методы приготовления реактивов для проведения анализа
4.1.1. Для получения очищенной воды последовательно пропускают дистиллированную воду через две колонки, наполненными смолами КУ-2 и ЭДЭ-10п. Подготовка ионообменных колонок производится так же, как при определении в морской воде общей растворенной ртути.
4.1.2. Все реактивы, основной и рабочий стандартные растворы готовятся на очищенной воде. При этом применяется вода, полученная ионообменным способом в день приготовления растворов.
4.1.3. Раствор аммония молибденовокислого готовят растворением 15 г соли в 500 мл очищенной воды. Раствор хранят в темной склянке.
4.1.4. Раствор серной кислоты готовят растворением 140 мл серной кислоты концентрацией 18 моль/л (плотность 1,84) в 900 мл очищенной воды.
4.1.5. Для приготовления раствора калия сурьмяновиннокислого навеску 0,34 г растворяют в 250 мл очищенной воды.
4.1.6. Раствор аскорбиновой кислоты готовят растворением 13,5 г препарата в 250 мл очищенной воды*. Хранить в темной склянке в темноте. Раствор устойчив не менее двух недель при хранении при комнатной температуре и до месяца при хранении в холодильнике.
________________
* Нельзя пользоваться препаратом аскорбиновой кислоты, приобретенным в аптеке, так как он нередко содержит сахар или глюкозу.
4.1.7. Смешанный реактив готовят, сливая в один сосуд 100 мл раствора молибдата аммония, 250 мл раствора серной кислоты и 50 мл раствора калия сурьмяновиннокислого. Смесь тщательно перемешивают. Реактив устойчив в течение 2-3 мес.
4.2. Определение поправки на загрязненность реактивов
Каждый раз после приготовления свежих растворов реактивов необходимо определить их загрязненность фосфором. Для этого измеряют оптическую плотность очищенной воды с реактивами относительно очищенной воды без реактивов. Находят измеренное значение оптической плотности на градуировочном графике и получают значение, характеризующее загрязненность реактивов (мкг/л). Градуировочный график должен быть построен по результатам измерения оптических плотностей стандартных растворов, приготовленных на очищенной воде.*
________________
* Градуировочный график, построенный по результатам измерения оптических плотностей стандартных растворов, приготовленных на не очищенной от фосфора воде, для этой цели не пригоден.
5. Проведение анализа
5.1. Схема проведения анализа
Пробу воды наливают в цилиндр Несслера до метки (50 мл). Цилиндр и пробу к нему предварительно дважды ополаскивают исследуемой морской водой. В каждый цилиндр к исследуемой пробе прибавляют 4 мл смешанного реактива и 1 мл раствора аскорбиновой кислоты. Растворы тщательно перемешивают и через 10 мин измеряют их оптическую плотность в кюветах длиной 100 мм на спектрофотометре при длине волны 882 нм или на фотоэлектроколориметре при светофильтре, наиболее близком к этой длине волны (например, для ФЭК-60 светофильтр N 8), с кюветой сравнения, наполненной исследуемой морской водой без реактивов. Следует иметь в виду, что окраска растворов устойчива не менее трех часов и, следовательно, после введения реактивов измерение оптических плотностей, если этого потребуют обстоятельства, можно производить не сразу.
5.2. Холостое определение
Для выполнения холостого определения к 50 мл воды, на которой готовят стандартные растворы (т.е. очищенной или морской), добавляют 4 мл смешанного реактива и 1 мл раствора аскорбиновой кислоты. Холостое определение проводят перед построением градуировочного графика и повторяют для каждой новой партии реактивов.
6. Подготовка средств измерений к работе
6.1. Методы приготовления градуировочных растворов
Для приготовления основного стандартного раствора однозамещенного фосфата калия 0,548 г соли растворяют в мерной литровой колбе в очищенной воде. 1 мл этого раствора содержит 0,125 мг элементарного фосфора. Для консервации добавляют 2 мл хлороформа. Раствор устойчив 2-3 мес.
Рабочий стандартный раствор однозамещенного фосфата калия готовят разведением 1 мл основного стандартного раствора очищенной водой в мерной колбе на 100 мл. Рабочий раствор готовится ежедневно перед анализом.
Градуировочные растворы готовят на очищенной или морской воде любой солености, но с небольшим содержанием фосфора. В цилиндры Несслера или мерные колбы на 50 мл отмеривают микробюреткой различные количества рабочего стандартного раствора и доводят до метки очищенной или морской водой. Для приготовления градуировочных растворов с концентрациями фосфора 5; 10; 25; 35 мкг/л и т.д. берут соответственно 0,2; 0,4; 1,0; 1,4 мл и т.д. рабочего раствора.
6.2. Установление градуировочных характеристик метода
Градуировочный график строят на основании измерений оптических плотностей нескольких градуировочных растворов. Каждый раствор готовят параллельно не менее трех раз и используют средние значения оптической плотности. Для этого каждый градуировочный раствор обрабатывают так же, как пробу воды, и измеряют оптическую плотность относительно холостой пробы. Градуировочный график следует проверять не реже одного раза в месяц и обязательно каждый раз при приготовлении новых растворов реактивов.
7. Обработка результатов
По измеренным значениям оптической плотности исследуемых проб морской воды с помощью градуировочного графика находят соответствующие значения концентрации фосфора (мкг/л). Для нахождения истинного содержания фосфора в пробе из найденного по градуировочному графику значения следует вычесть поправку на загрязненность реактивов.
8. Числовые значения показателей погрешности MBИ
На основании метрологической аттестации, проведенной ВНИИАСМ-НПО "Исари" Госстандарта СССР с 01.09 по 25.12.87 (табл.13), настоящая методика определения фосфатов допущена к применению в организациях Росгидромета.
Таблица 13
Результаты метрологической аттестации
|
|
|
|
Диапазон концентраций фосфатов, мкг/л | Показатель воспроизводимости ( ), % | Показатель правильности ( ), % | Показатель погрешности МВИ, суммарная погрешность ( ), % |
5-100 | 2,15 | 3,9 | 4,6 |
9. Требования к квалификации аналитика
Определение фосфатов может выполнять инженер или техник-химик со средним специальным образованием, имеющий опыт работы с химическими препаратами.
10. Нормы затрат рабочего времени на анализ
Для анализа фосфатов в 100 пробах требуется 20,9 чел.-ч, в том числе:
на взятие проб из батометра - 2,0 чел.-ч;
на приготовление растворов реактивов - 4,2 чел.-ч;
на подготовку посуды и очищенной воды - 5,5 чел.-ч;
на выполнение измерений - 5,2 чел.-ч;
на выполнение расчетов - 4,0 чел-ч.
СПИСОК ЛИТЕРАТУРЫ
1. Методы гидрохимических исследований океана. - М.: Наука, 1978, с.165-171.
2. Руководство по методам химического анализа морских вод. - Л.: Гидрометеоиздат, 1977, с.66-71.
3. Chemical methods for use in marine environmental monitoring/IOC, Manuals and Guides, N 12. - UNESCO, 1983, p.16-22.
4. Methods of seawater analysis/Grasshoff K. et al. (Eds.). - Weinheim, Verlag Chemie, 1983, p.125-187.
5. Моrphу J. and Rilеу J.P. Modified single solution method for the determination of phosphate in natural waters. - Anal. Chim. Acta, 1962, v.27, No 1, p.31-36.
ОБЩИЙ ФОСФОР
Соединения фосфора относятся к физиологически важным компонентам химического состава морских вод, определяющим их продуктивность. Существует много форм фосфорных соединений в морской воде: ортофосфаты, детергенты, пестициды, эфиры фосфорной кислоты, полифосфаты, многочисленные органические производные и др. В последнее время их чрезмерная концентрация в ряде районов, главным образом, за счет коммунально-бытовых и сельскохозяйственных стоков, вызывает бурный рост морских растений, разложение остатков которых приводит к повышенному потреблению кислорода. Поэтому в таких случаях соединения фосфора рассматривают как загрязняющие вещества.
Все известные методы определения общего фосфора основаны на окислении его соединений до растворимого ортофосфата с последующим анализом по известной методике Морфи и Райли [3]. Однако при использовании в качестве окислителя концентрированной серной кислоты соединения со связью Р-С не разлагаются. Применяемое иногда для этих целей фотохимическое окисление требует специального оборудования (кварцевые сосуды, УФ-лампа), что затрудняет широкое его внедрение для проведения массовых анализов. Наиболее простой и чувствительный метод - окисление соединений фосфора с помощью надсернокислого калия [2] - описан в настоящем "Руководстве".
Следует отметить, что этим методом можно определить только общий фосфор, находящийся в составе соединений, растворимых в морской воде.
1. Сущность метода анализа
Фильтрованную пробу морской воды кипятят с надсернокислым калием и образовавшийся ион ортофосфата определяют известным способом [3] с помощью молибденовокислого аммония на спектрофотометре при длине волны 882 нм или на фотоэлектроколориметре с соответствующим светофильтром. С предложенными в методике концентрациями серной кислоты и молибдата аммония и при измерении оптической плотности через 5 мин анализ можно проводить в присутствии арсенатов (голубой комплекс образуется только через час) и 10 мг/л кремния [3].