ПНСТ 420-2020 Информационные технологии (ИТ). Интернет вещей промышленный. Типовая архитектура.

        ПНСТ 420-2020

 

 ПРЕДВАРИТЕЛЬНЫЙ НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

 

 

 Информационные технологии

 

 ИНТЕРНЕТ ВЕЩЕЙ ПРОМЫШЛЕННЫЙ

 

 Типовая архитектура

 

 Information technology. The Industrial internet of things. Reference architecture

ОКС 35.110, 35.020

Срок действия с 2021-01-01

до 2024-01-01

 

 Предисловие

     

1 РАЗРАБОТАН Акционерным обществом "Всероссийский научно-исследовательский институт сертификации" (АО "ВНИИС") и Акционерным обществом "Российская венчурная компания" (АО "РВК")

 

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 194 "Кибер-физические системы"

 

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 23 июля 2020 г. N 29-пнст

 

Правила применения настоящего стандарта и проведения его мониторинга установлены в ГОСТ Р 1.16-2011 (разделы 5 и 6).

 

Федеральное агентство по техническому регулированию и метрологии собирает сведения о практическом применении настоящего стандарта. Данные сведения, а также замечания и предложения по содержанию стандарта можно направить не позднее чем за 4 мес до истечения срока его действия разработчику настоящего стандарта по адресу: 121205 Москва, Инновационный центр Сколково, улица Нобеля, д.1, e-mail: [email protected] и/или в Федеральное агентство по техническому регулированию и метрологии: 109074, Москва, Китайгородский проезд, д.7, стр.1.

 

В случае отмены настоящего стандарта соответствующая информация будет опубликована в ежемесячном информационном указателе "Национальные стандарты" и также будет размещена на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

 

 

 Введение

Настоящий стандарт определяет архитектурное представление систем промышленного Интернета вещей (ИВ) и предназначен для системных архитекторов, руководителей предприятий, менеджеров управления проектов в области информационных технологий (ИТ), бизнес-менеджеров и других лиц, которые ставят задачу рассмотреть конвергенцию ИТ и операционных технологий (ОТ) как важную часть достижения преимуществ промышленного ИВ. Системные архитекторы могут использовать архитектурное представление систем для определения требований разрабатываемой системы промышленного ИВ и разработки архитектуры. Применение общего подхода к проектированию архитектуры обеспечивает последовательную реализацию архитектуры в разных случаях использования в различных промышленных секторах, соответствующих определенным системным требованиям.

 

Для того чтобы обеспечить широкое применение для промышленных интернет-приложений во всех отраслях промышленности, описания типовой архитектуры определены на высоком уровне, а концепции и модели типовой архитектуры имеют высокую степень абстракции. При применении типовой архитектуры для реальных сценариев использования абстрактные архитектурные концепции и модели расширяются и преобразуются в детализированные архитектуры, учитывающие специфику сценариев использования промышленного ИВ.

 

Настоящий стандарт обеспечивает общее понимание системы различными заинтересованными сторонами, что облегчает развертывание системы и повышает функциональную совместимость системы в различных секторах промышленности.

 

Настоящий стандарт не ограничивается существующими технологиями и учитывает технологии на стадии испытаний.

 

 

      1 Область применения

Настоящий стандарт определяет:

 

- типовую архитектуру для систем промышленного ИВ;

 

- структуру архитектуры промышленного ИВ, содержащую точки зрения на архитектуру и интересы системы для разработки, документирования и взаимодействия;

 

- точки зрения на бизнес, использование, функциональность и реализацию с учетом концепций по ГОСТ Р 57100.

 

 

      2 Нормативные ссылки

В настоящем стандарте использована нормативная ссылка на следующий стандарт:

 

ГОСТ Р 57100/ISO/IEC/IEEE 42010:2011 Системная и программная инженерия. Описание архитектуры

 

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

 

 

      3 Термины и определения

В настоящем стандарте применены термины по ГОСТ Р 57100, а также следующие термины с соответствующими определениями:

 

3.1 каркас архитектуры (architecture frame): Совокупность концепций и соглашений по задачам, заинтересованным сторонам, точкам зрения и типам модели.

 

3.2 архитектурное отображение (architecture presentation): Набор результатов применения каркаса архитектуры к конкретной или абстрактной системе в виде архитектурного представления и моделей.

 

3.3 типовая архитектура (reference architecture): Результат применения структуры архитектуры к классу систем для предоставления рекомендации и определения, анализа и решения общих важных архитектурных задач.

 

Примечание - Типовая архитектура может быть использована в качестве шаблона для конкретной архитектуры систем класса.

 

 

      4 Сокращения

В настоящем стандарте применены следующие сокращения:

 

ICS - промышленная система управления (Industrial Control Systems);

 

RFID - радиочастотная идентификация (Radio Frequency Identification);

 

SDN - программно-определяемая сеть (Software Defined Network);

 

SLA - соглашение об уровне обслуживания (Service Level Agreement);

 

ИВ - интернет вещей (Internet of Things);

ИТ - информационные технологии (Information Technologies, IT);

 

ОТ - операционные технологии (Operation Technologies, ОТ);

 

ПИД - пропорционально-интегрально-дифференцирующие (proportional-integrative-derivative, PID).

 

 

      5 Концепция типовой архитектуры промышленного Интернета вещей

Типовая архитектура предназначена для разработки систем, решений и архитектур приложений и предоставляет общие и непротиворечивые определения целевой системы, шаблоны декомпозиции и проектирования, а также общий словарь [1]*.

 

 

           

Пример - Типовая архитектура жилого дома устанавливает, что жилые дома должны иметь одну или несколько спален, ванные комнаты, кухню и гостиную. Набор комнат становится доступным внутри дома через двери, коридоры и лестницы, а снаружи - через главную и заднюю двери. Дом обеспечивает среду, безопасную от таких угроз, как пожар, ураганы и землетрясения. Конструкция дома должна выдерживать снеговые и ветровые нагрузки окружающей среды. Дом должен предоставить разумные меры для обнаружения и предотвращения несанкционированных вторжений.

 

Типовая архитектура обеспечивает общую структуру, в которой может быть проведена дальнейшая детализация. Высокий уровень абстракции типовой архитектуры позволяет выявлять и понимать наиболее важные проблемы и шаблоны приложений во многих разных вариантах использования. В типовой архитектуре не учтены особенности отдельных областей применения, что обеспечивает ее использование без дополнительных ограничений.

 

Типовая архитектура промышленного ИВ - это стандартная открытая архитектура для систем промышленного ИВ. Типовая архитектура предназначена для широкого применения в промышленности для обеспечения функциональной совместимости, обозначения используемых технологий, а также для управления технологиями и разработкой стандартов. Описание и отображение архитектуры являются общими и высокоуровневыми.

 

Типовая архитектура не ограничена технологиями, имеющимися на сегодняшний день, и, таким образом, может способствовать определению технологических пробелов на основе архитектурных требований.

 

      6 Структура архитектуры промышленного Интернета вещей

     

 

      6.1 Структура архитектуры

Сложные системы ИВ затрагивают многие заинтересованные стороны, которые имеют большое число взаимосвязанных задач. Задачи, поставленные заинтересованными сторонами, охватывают весь жизненный цикл системы. Сложность системы обуславливает наличие структуры для выявления и классификации интересов в соответствующие категории. Такая структура обеспечивает систематическую оценку систем, а также детализацию для разработки и построения систем.

 

В структуре архитектуры промышленного ИВ использованы концепции ГОСТ Р 57100. Структура архитектуры определяет соглашения, принципы и практики для согласованного описания архитектуры. Стандартная структура архитектуры облегчает оценку, а также системное и эффективное решение задач заинтересованных сторон.

 

На рисунке 1 приведена концептуальная модель описания архитектуры по ГОСТ Р 57100. Цветные прямоугольники со сплошной заливкой добавлены к исходному рисунку, приведенному в ГОСТ Р 57100, для обозначения архитектурных конструкторов типовой архитектуры.

 

 

 

 

     Рисунок 1 - Описание архитектуры по ГОСТ Р 57100

Структура архитектуры содержит базовые архитектурные конструкции и определяет задачи, заинтересованные стороны, точки зрения, виды моделей, правила соответствия и условия применимости. Системные архитекторы могут использовать структуру архитектуры для обнаружения, описания и систематизации интересов системы, а отображение архитектуры - для уточнения, анализа и принятия решения по интересам системы.

 

В основе описания архитектуры по ГОСТ Р 57100 лежат определенные точки зрения. Точка зрения включает в себя условности конструкции и анализ интересов системы и структурирует один интерес или более. Для каждой точки зрения определен один вид модели или более. Конструкции точек зрения и соответствующие заинтересованные стороны, интересы и виды моделей составляют каркас архитектуры.

 

Архитектурное представление выражает архитектуру рассматриваемой системы в соответствии с точкой зрения. Применение видов моделей для каждой точки зрения приводит к созданию архитектурных моделей. Совместно архитектурные представления и архитектурные модели составляют архитектурное отображение.

 

Пример - Общим подходом к проектированию сложной системы является функциональная декомпозиция системы. Устанавливаются интересы функциональных подсистем, их интерфейсы взаимодействия и порядок взаимодействия подсистем для реализации целевого поведения системы. Функциональная декомпозиция системы облегчает понимание, проектирование, реализацию, повторное использование и обслуживание каждой подсистемы. Для описания структуры подсистем и их интерфейсов может быть использована диаграмма компонентов, для описания взаимодействия подсистем - диаграмма последовательностей, и для описания реагирования системы и подсистем - диаграмма состояний. Данные диаграммы и соответствующая документация решают задачу функциональной декомпозиции. Диаграммы компонентов, последовательностей и состояний являются видами модели для функциональной структуры системы; результатом применения видов моделей к структуре системы - архитектурные модели.

 

Каркас архитектуры и архитектурное отображение представлены на рисунке 2.

 

 

 

 

     Рисунок 2 - Структура архитектуры

 

      6.2 Структура архитектуры промышленного Интернета вещей

Каркас архитектуры и архитектурное отображение совместно составляют структуру архитектуры промышленного ИВ, как показано на рисунке 3. Структура архитектуры промышленного ИВ является базовой структурой для анализа систем промышленного ИВ.

 

 

      6.3 Типовая архитектура промышленного Интернета вещей

Типовая архитектура промышленного ИВ является результатом применения структуры архитектуры к целевому классу систем, т.е. систем промышленного ИВ. В первую очередь в типовой архитектуре определены и выделены наиболее важные интересы систем, характерные для систем промышленного ИВ в различных отраслях промышленности, и проведена классификация интересов систем по точкам зрения с учетом заинтересованных сторон. Далее типовая архитектура описывает, анализирует и предоставляет руководство для решения интересов систем в точках зрения, результатом чего является архитектурное отображение.

 

На рисунке 3 представлены конструкция и применение типовой архитектуры промышленного ИВ.

 

 

 

 

     Рисунок 3 - Конструкция и применение типовой архитектуры промышленного ИВ

Типовая архитектура представляет собой уровень абстракции, который исключает архитектурные элементы, для оценивания которых требуются характеристики конкретной системы. Типовая архитектура адаптирует концепцию архитектуры по ГОСТ Р 57100 с двумя отличиями:

 

- в типовой архитектуре вид модели не определен в качестве ключевой конструкции структуры;

 

- в типовой архитектуре не определены такие конструкции, как обоснование архитектуры, правило связи и связь. Их определение может быть проведено по мере необходимости во время разработки конкретных архитектур.

 

Определенные в рамках типовой архитектуры представления и модели не являются единственно верными для рассмотрения интересов системы в точках зрения. Степень их детализации недостаточна для реализации системы. Представления могут быть использованы в качестве отправной точки для конкретной архитектуры, а затем расширены, доработаны, дополнены или заменены более оптимальными элементами в соответствии с потребностями конкретной системы промышленного ИВ.

 

 

      6.4 Точки зрения типовой архитектуры промышленного Интернета вещей

6.4.1 Общие положения

 

Точки зрения типовой архитектуры включают [2]:

 

- точку зрения на бизнес;

 

- точку зрения на использование;

 

- функциональную точку зрения;

 

- точку зрения на реализацию.

 

Как показано на рисунке 4, данные четыре точки зрения формируют основу для подробного последовательного анализа интересов системы промышленного ИВ. Системные архитекторы могут определять дополнительные точки зрения для систематизации интересов на основе требований конкретной системы.

 

 

 

 

     Рисунок 4 - Точки зрения типовой архитектуры

6.4.2 Точка зрения на бизнес

 

Точка зрения на бизнес учитывает интересы системы, касающиеся определения заинтересованных сторон и их видения бизнеса, ценностей и целей при создании системы промышленного ИВ в ее деловом и нормативном контекстах. Точка зрения определяет, каким образом возможности системы промышленного ИВ обеспечивают достижение поставленных целей.

 

Точка зрения на бизнес представляет интерес для лиц, принимающих бизнес-решения, менеджеров по продуктам и системных инженеров.

 

Точка зрения на бизнес подробно определена в разделе 7.

 

6.4.3 Точка зрения на использование

 

Точка зрения на использование учитывает интересы системы, касающиеся ожидаемого применения системы. Как правило, точка зрения на использование представлена в виде последовательности действий пользователей-людей или логических пользователей (например, систем или компонентов системы).

 

Точка зрения на бизнес представляет интерес для системных инженеров, менеджеров по продукту, пользователей и т.д.

Точка зрения на использование подробно определена в разделе 8.

 

6.4.4 Функциональная точка зрения

 

Функциональная точка зрения определяет функциональные компоненты в системе промышленного ИВ, их структуру и взаимосвязи, интерфейсы и взаимодействия между ними, а также взаимодействия системы с внешними элементами для обеспечения деятельности всей системы.

 

Функциональная точка зрения представляет интерес для системных архитекторов, разработчиков и интеграторов.

 

Функциональная точка зрения подробно определена в разделе 9.

 

6.4.5 Точка зрения на реализацию

 

Точка зрения на реализацию определяет технологии для реализации функциональных компонентов, их схемы связи и процедуры жизненного цикла.

 

Точка зрения на реализацию представляет интерес для системных архитекторов, разработчиков, интеграторов и операторов системы.

 

Точка зрения на реализацию подробно определена в разделе 10.

 

 

      6.5 Сквозные интересы и системные характеристики

Точки зрения на бизнес, использование, реализацию и функциональная точка зрения обеспечивают системный подход к определению интересов и заинтересованных сторон системы промышленного ИВ. Системный подход позволяет объединить аналогичные или связанные интересы для их эффективного анализа и решения. При этом интересы не должны рассматриваться только в рамках соответствующей точки в отдельности от интересов в других точках зрения.

 

Общий шаблон взаимодействия между точками зрения на рисунке 5 определяет порядок рассмотрения точек зрения. В целом решения с точек зрения более высокого уровня налагают требования на точки зрения более низкого уровня. Например, решения, принятые с точки зрения бизнеса, имеют прямое влияние на решения с точки зрения использования и т.д. С другой стороны, решение с точки зрения более низкого уровня с учетом принятия требований с более высокого уровня подтверждает или приводит к пересмотру решений на более высоком уровне. Например, рассмотрение с точки зрения на использование подтверждает возможность реализации фундаментальных возможностей системы, предложенных с точки зрения на бизнес.

 

 

 

 

     Рисунок 5 - Взаимосвязи между точками зрения типовой архитектуры, областью применения и жизненным циклом системы

Кроме того, существуют группы интересов системы, например связанные с безопасностью и защитой, которые требуют последовательного рассмотрения со всех точек зрения. Такие интересы именуют сквозными. Сквозные интересы часто связаны с производными свойствами системы, определяющимися не только компонентами системы, но и взаимодействием между ними. В контексте типовой архитектуры производные общесистемные свойства называются системными характеристиками. Системные характеристики - это свойства и поведение системы промышленного ИВ, обусловленные характеристиками подсистем и их взаимодействием друг с другом, контекстом и рабочей средой. Системные характеристики, как правило, имеют договорную стоимость для заинтересованных сторон системы, например наличие соглашения об уровне обслуживания (SLA).

 

Интересы системы, связанные с безопасностью и защитой, имеют решающее значение для систем промышленного ИВ. Важно иметь четкое представление о требованиях безопасности и защиты как о факторах развития бизнеса и понимание потенциального влияния невыполнения требований на бизнес-цели. Это также требует детального рассмотрения того, как эти требования влияют на использование системы. Требования и факторы применения должны быть отражены в проектах функциональных компонентов, выборе технологий и фактической реализации системы.

 

Системные характеристики могут регулироваться нормативными актами, требованиями соответствия и договорными соглашениями и, следовательно, должны проводиться их измерение и оценка. Системы формируются из компонентов и решений разных производителей и могут собираться динамически после развертывания, поэтому для оценки, выбора, приобретения и сборки подходящих компонентов в целевую систему промышленного ИВ может потребоваться наличие сведений о заявленных свойствах и поддержки конкретных системных характеристик в компонентах.

 

Более подробные обсуждения сквозных интересов и системных характеристик, таких как безопасность и защита, а также понятие доверенности для решения вопросов безопасности, защищенности, надежности, способности к восстановлению и приватности приведены в [1], [3].

 

 

      6.6 Учет жизненного цикла системы

Интересы системы, обозначенные типовой архитектурой, должны быть рассмотрены на всех стадиях жизненного цикла системы [1]. В точках зрения типовой архитектуры учтены стадии жизненного цикла системы - от концепции системы промышленного ИВ до проектирования и реализации. Точки зрения позволяют разработчикам систем итеративно продумывать важные общие архитектурные проблемы при создании системы промышленного ИВ. При этом процесс жизненного цикла системы варьируется от одного промышленного сектора к другому и не входит в область применения настоящего стандарта, и типовая архитектура позволяет определить важные интересы системы, которые могут повлиять на процесс жизненного цикла.

 

 

      7 Точка зрения на бизнес

Точка зрения на бизнес - это точка зрения на архитектуру, которая определяет видение, ценности и цели заинтересованных сторон в создании системы промышленного ИВ в ее деловом и нормативном контексте.

 

При рассмотрении системы промышленного ИВ в качестве способа решения бизнес-интересов необходимо оценить бизнес-интересы, такие как стоимость бизнеса, ожидаемая окупаемость инвестиций, стоимость обслуживания и ответственность за качество продукции. На рисунке 6 представлена модель, ориентированная на видение и прибыль, для выявления, оценки и решения бизнес-интересов.

 

 

 

 

     Рисунок 6 - Точка зрения на бизнес системы промышленного ИВ

Заинтересованные стороны играют основную роль в бизнесе и имеют сильное влияние на его направление. Заинтересованные стороны включают тех, кто руководит концепцией и разработкой систем промышленного ИВ в организации и обеспечивает стратегическое развитие компании или отрасли. Заинтересованные стороны должны быть определены и вовлечены в процесс оценки бизнес-интересов на раннем этапе.

 

Заинтересованные стороны могут учитывать промежуточные технологические и бизнес-факторы, в том числе внешние технологические тренды, состояние и перспективы развития рынка области применения, ресурсы клиента и нормативные требования (например, в области безопасности, приватности, охраны окружающей среды и труда).

 

Видение определяет будущее состояние организации или отрасли. Видение обеспечивает направление, в котором работает организация. Вышестоящие заинтересованные стороны разрабатывают и представляют видение организации.

 

Ценности отражают видение и позволяют его воспринимать участникам финансирования внедрения и пользователям новой системы, а также другим заинтересованным сторонам. Ценности, как правило, определяются вышестоящими бизнес- и техническими руководителями организации. Ценности дают обоснование достоинств видения.

 

Ключевыми показателями являются количественные высокоуровневые технические и в конечном итоге бизнес-результаты, которые ожидаются от полученной системы в контексте ценностей. Ключевые показатели должны быть измеримыми и ограниченными во времени. Ключевые показатели разрабатываются вышестоящими бизнес- и техническими руководителями организации.

 

Основные возможности являются высокоуровневой спецификацией способности системы выполнять бизнес-задачи. Основой для определения подобных возможностей являются ключевые показатели. Возможности должны быть определены независимо от реализации (как архитектуры, так и технологической), чтобы разработчики и исполнители системы не были чрезмерно ограничены.

 

Первым этапом является определение видения организации заинтересованными лицами и поиск возможностей улучшения деятельности организации путем внедрения системы промышленного ИВ. Исходя из видения заинтересованные стороны устанавливают ценности и разрабатывают ряд ключевых показателей. Ключевые показатели обуславливают основные возможности, которые должна иметь система.

 

Основные возможности должны быть охарактеризованы количественными признаками, такими как степень безопасности, защищенности и способности к восстановлению, контрольными показателями для измерения эффективности системы и критериями, по которым заявленные характеристики системы могут быть подтверждены.

 

 

      8 Точка зрения на использование

Точка зрения на использование - это точка зрения на ту архитектуру, которая отражает интересы системы, связанные с реализацией возможностей и структуры системы промышленного ИВ.

 

Точка зрения на использование с реализацией системой промышленного ИВ ключевых показателей, определенных с точки зрения бизнеса, описывает действия, которые координируют различные единицы работы между различными компонентами системы. Действия служат входом для системных требований, включая требования к системным характеристикам, и определяют процесс проектирования, реализации, развертывания, эксплуатации и развития системы промышленного ИВ.

 

На рисунке 7 показаны основные понятия точки зрения на использование и их взаимосвязь.

 

 

 

 

     Рисунок 7 - Точка зрения на использование системы промышленного ИВ

Основной единицей работы является задача, такая как вызов операции, передача данных или действие стороны. Задача выполняется стороной, принимающей на себя роль.

 

Роль - это набор возможностей, принимаемый сущностью для выполнения или использования результатов некоторых задач или функций в системе промышленного ИВ. Роли принимаются сторонами. Сторона - это агент, человек или автоматическая, обладающие автономией, интересом и ответственностью при выполнении задач. Сторона выполняет задачу, взяв на себя роль, обладающую необходимыми возможностями для выполнения задачи. Партия может принять более одной роли, а роль может выполняться более чем одной стороной.

 

Вышеупомянутое определение роли связано с функционированием и основано на тех возможностях, которые квалифицируют агента с функциональной точки зрения. В текущем контексте роль не предназначена для контроля доступа в целях безопасности. Однако так как принятие роли подразумевает доступ к системе промышленного ИВ, она связана с определенными свойствами защищенности (привилегиями, разрешениями и т.д.). Таким образом может потребоваться более точное представление о роли, например организационная диаграмма, группа пользователей, что не входит в область применения настоящего стандарта. Сторона также имеет свойства защищенности (учетные данные, идентификатор и т.д.) для принятия роли, что также не входит в область применения настоящего стандарта.

Задача имеет роль, функциональную карту и карту реализации.

 

Под ролью понимается, если применимо, роль или роли, ответственная(ые) за выполнение задачи.

 

Функциональная карта описывает, к каким функциям или функциональным компонентам относится задача, что включает определение входных и выходных данных в контексте выполнения задачи. Функциональная карта может быть разработана после создания функциональной архитектуры системы.

 

Карта реализации описывает те компоненты реализации, от которых зависит выполнение задачи. Если задача имеет роли, то на карте должно быть отображение возможностей ролей для компонентов и связанных действий. Карта реализации может быть разработана после создания архитектуры реализации системы.

 

Примеры задач и ролей включают:

 

- регистрацию нового устройства на граничном шлюзе (роль - администратор);

 

- запуск процедуры тестирования для пассивных считывателей RFID в цепи обработки X (роли - администратор, тестировщик);

 

- запрос на аутентификацию пользователя (роль - агент защиты);

 

- суммирование потоков сенсорных данных в активе X (роль - инициатор обработки и консолидации потока данных от границы до облака).

 

Действия - это конкретная координация задач для четко определенного использования или процесса системы промышленного ИВ. Действия могут быть выполнены в режиме повторения. Действия включают следующие элементы:

 

- триггер - это одно или несколько условий, при которых инициируется действие. Триггер может быть связан с одной или несколькими ролями, ответственными за инициирование выполнения;

 

- производственный поток, который имеет последовательную, параллельную, условную и итеративную организацию задач;

 

- результаты - это изменение состояния системы промышленного ИВ после успешного завершения действия;

 

- ограничения - это системные характеристики, которые должны быть сохранены во время выполнения и после достижения нового состояния, такие как целостность данных, конфиденциальность данных и способность к восстановлению. На указанные характеристики может повлиять постановка задач, которые выходят за рамки возможностей системы или ее функциональных компонентов.

 

Примером действия является подключение устройства. Триггером является утверждение добавления в систему (роль - администратор). Производственный поток включает следующие последовательные задачи:

 

- задача 1: регистрация нового устройства на пограничном шлюзе;

 

- задача 2: регистрация нового устройства в облачной платформе управления путем автоматического обнаружения и отправки запроса всем шлюзам;

 

- задача 3: запуск процедуры удаленного тестирования, соответствующую данному типу устройства, и проверка того, что полученные значения находятся в ожидаемом диапазоне и соответствуют аналогичным устройствам в сети ближнего действия.

 

На первом этапе абстрактное описание действий является достаточным. Во время проектирования действия служат в качестве входных данных для требований к системе, таким образом обуславливая проектирование функциональной архитектуры и ее компонентов. Далее для каждого действия должны быть определены задачи, поддерживаемые одной или несколькими функциями. Деятельность не ограничена одним функциональным доменом и может включать последовательность задач, охватывающих несколько функциональных доменов.

 

После проведения указанных действий в проекте системы промышленного ИВ имеется конкретное представление о действиях путем сопоставления задач с функциональными компонентами и компонентами реализации. Сопоставления позволяют проводить верификацию архитектуры и реализации.

 

 

      9 Функциональная точка зрения

 

      9.1 Базовая проблематика

Промышленные системы управления (ICS) широко используются для обеспечения промышленной автоматизации в различных секторах промышленности. Автоматизированные системы управления внедряются в более широкомасштабные системы с использованием режима онлайн в рамках промышленного интернет-доступа. При этом контроль остается центральной и важной частью промышленных систем. В указанном контексте контроль - это процесс автоматического воздействия на физические системы и окружающую среду на основе сенсорных данных для достижения целей человека и бизнес-целей. Многие системы контроля в настоящее время используют в физических системах мелкоструктурные элементы управления с малой задержкой без подключения к другим системам. Это усложняет создание локального совместного контроля и, тем более, глобального.

 

Промышленный ИВ представляет собой соединение двух традиционно разных областей с разными целями, стандартами и дополнительными дисциплинами: информационные технологии (ИТ) и операционные технологии (ОТ).

 

Существенной проблемой ИТ, отмеченной как одна из фундаментальных проблем в сообществе искусственного интеллекта, является проблема первичного определения значений - проблема "заземления" символов. Суть этой проблемы в том, что первичное "заземление" понятий возможно в контексте непосредственного восприятия и предметных действий и машинные символы соответствуют объектам мира только по назначению программиста.

 

В ОТ элементы управления (традиционно аналоговые) применяются к физическим процессам без какой-либо попытки создания символов или моделей, обрабатываемых машиной. Например, пропорционально-интегрально-дифференцирующие (ПИД) регуляторы могут управлять напряжением в линии с использованием определенного уравнения обратной связи. Уравнение обратной связи определяется инженером по системам автоматизации и настраивается для работы в конкретном приложении. Отсутствуют универсальность и необходимость разделить задачу между несколькими процессорами.

 

Появление ИТ в мире ОТ связано с необходимостью объединения больших систем в сети, установления контроля над иерархиями машин и внедрения идей ИТ в ОТ (таких как планирование и оптимизация потребления ресурсов). Также произошел переход к элементам управления, которые моделируют физический мир в цифровой форме и основывают свои решения по управлению на имитационной модели, а не с использованием уравнения обратной связи, определяемого инженером по системам автоматизации. Это позволяет применять к ОТ такие технологии ИТ, как машинное обучение. Конвергенция ИТ и ОТ привела к тому, что системы ОТ стали восприимчивыми к проблемам ИТ, таким как атака и отказ в обслуживании в сети, а также вышеупомянутая проблема "заземления" символов.

 

Конвергенция ИТ и ОТ представляет собой познание, воплощенное в индустриальную систему. Возможно, это позволит уйти от проблемы "заземления" символов, так как индустриальная система будет базироваться на своем представлении о мире (а не на моделях, предоставляемых программистами) и на собственном опыте (не ограничиваясь человеческими представлениями). Ближайшие научно-технические достижения, которые поддерживают расширенную аналитику реальных данных, а не инженерные модели, могут привести к существенным улучшениям.

 

Основными препятствиями конвергенции ИТ и ОТ являются безопасность и способность к восстановлению. Критически важные приложения ОТ, в которых отказы могут поставить под угрозу жизнь или благополучие человека, требуют надежности на уровне, гораздо большем уровня надежности в приложениях ИТ. Уровень надежности в ИТ-системах может быть неприемлемым в критически важных приложениях ОТ. Более того, действия в физическом мире, как правило, не могут быть отменены, что не является проблемой для ИТ-систем.

 

Прогресс вычислительных и коммуникационных технологий может быть применен к промышленному ИВ для существенного преобразования систем промышленного управления в двух основных областях:

 

- расширение локальной совместной автономии. Новые технологии восприятия и обнаружения предоставляют все более точные данные. Встроенная вычислительная мощность дает возможность более углубленно анализировать эти данные и лучше моделировать состояние физической системы и рабочей среды. В результате системы управления преобразуются из автоматических в автономные, что позволяет им реагировать определенным образом, даже если разработчики системы не ожидали текущего состояния системы. Широко распространенная связь между одноранговыми системами обеспечивает уровень объединения и совместной работы, который ранее был непрактичным;

 

- повышение оптимизации системы с помощью глобальной оркестровки. Сбор сенсорных данных со всех систем контроля и использование аналитических данных, включая модели, разработанные с помощью машинного обучения, могут помочь в понимании работы бизнеса. Благодаря такому пониманию, улучшенное принятие решений и оптимизированные системные операции могут быть достигнуты во всем мире посредством автоматической и автономной оркестровки.

 

 

      9.2 Функциональная точка зрения и функциональные домены

Функциональная точка зрения - это точка зрения на ту архитектуру, которая отражает интересы, связанные с функциональными возможностями и структурой системы промышленного ИВ и ее компонентов [2].

 

Для эффективного анализа функциональных интересов вводят понятие функционального домена как средства для разложения функциональных интересов. Функциональный домен представляет собой отличительную функциональность в общей системе промышленного ИВ. Декомпозиция типичной системы промышленного ИВ на функциональные домены формирует компоновочные блоки, которые имеют широкое применение во многих промышленных областях. Требования конкретной системы будут влиять на то, как разделяются функциональные домены, какие дополнительные функции могут быть добавлены или исключены, а какие функции могут быть объединены и разделены дополнительно.

 

Настоящий стандарт устанавливает пять функциональных доменов типовой архитектуры:

 

- домен контроля;

 

- домен эксплуатации;

 

- информационный домен;

 

- домен приложения;

 

- бизнес-домен.

 

Потоки данных и потоки управляющих команд происходят внутри и между функциональными доменами. Рисунок 8 иллюстрирует движение потоков данных и потоков управляющих команд между функциональными доменами. Зеленые стрелки показывают движение потоков данных, красные - потоков управляющих команд. Другие стрелки обозначают входные потоки и генерирование новых форм потоков данных или потоков управляющих команд.