ГОСТ 33400-2015 Методы испытаний химической продукции, представляющей опасность для окружающей среды. Определение комплексообразования в воде полярографическим методом.
ГОСТ 33400-2015
МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ
МЕТОДЫ ИСПЫТАНИЙ ХИМИЧЕСКОЙ ПРОДУКЦИИ, ПРЕДСТАВЛЯЮЩЕЙ ОПАСНОСТЬ ДЛЯ ОКРУЖАЮЩЕЙ СРЕДЫ
Определение комплексообразования в воде полярографическим методом
Test methods of chemicals of environmental hazard. Determination of the complex formation ability in water (рolarographic method)
МКС 13.020.01
Дата введения 2016-09-01
Предисловие
Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены
ГОСТ 1.0 "Межгосударственная система стандартизации. Основные положения" и
ГОСТ 1.2 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены"
Сведения о стандарте
1 ПОДГОТОВЛЕН Межгосударственным техническим комитетом по стандартизации МТК 339 "Безопасность сырья, материалов и веществ" на основе собственного перевода на русский язык англоязычной версии международного документа, указанного в пункте 5
2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии
3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 22 июля 2015 г. N 78-П)
За принятие проголосовали:
|
|
|
Краткое наименование страны по МК (ИСО 3166) 004-97 | Код страны по МК (ИСО 3166) 004-97 | Сокращенное наименование национального органа по стандартизации |
Армения | AM | Минэкономики Республики Армения |
Беларусь | BY | Госстандарт Республики Беларусь |
Казахстан | KZ | Госстандарт Республики Казахстан |
Киргизия | KG | Кыргызстандарт |
Россия | RU | Росстандарт |
Таджикистан | TJ | Таджикстандарт |
4
Приказом Федерального агентства по техническому регулированию и метрологии от 12 октября 2015 г. N 1532-ст межгосударственный стандарт ГОСТ 33400-2015 введен в действие в качестве национального стандарта Российской Федерации с 1 сентября 2016 г.
5 Настоящий стандарт является модифицированным по отношению к международному документу OECD, Test No. 108:1981* "Комплексообразование в воде (полярографический метод)" ("Complex formation ability in water (Polarographic method)", MOD) путем изменения структуры. Сопоставление структуры настоящего стандарта со структурой примененного в нем международного документа приведено в дополнительном
приложении ДА .
Наименование настоящего стандарта изменено относительно наименования международного документа для приведения в соответствие с
ГОСТ 1.5 (пункт 3.6).
6 ВВЕДЕН ВПЕРВЫЕ
7 ПЕРЕИЗДАНИЕ. Май 2019 г.
Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.
В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге "Межгосударственные стандарты"
1 Область применения
1.1 Настоящий стандарт устанавливает полярографический метод определения комплексообразования в воде.
1.3 Представленный метод не может использоваться для исследований комплексных соединений ртути.
2 Термины и определения
В настоящем стандарте применен термин с соответствующим определением:
3 Общие сведения
3.1 Способность новых химических веществ к образованию растворимых комплексов с металлами приводит к повышению доступности металлов для пищевых цепей. В иных случаях, например, при попадании в нерастворимые отложения, металлы становятся недоступными. Способность к комплексообразованию имеет очень большое значение для таких металлов, как кадмий, медь, кобальт, хром, свинец и цинк, и может оцениваться с помощью полярографических методов, позволяющих определить константы устойчивости некоторых комплексных соединений.
3.3 Два или более ионов могут быть определены последовательно, если их потенциалы полуволн различаются не менее чем на 0,4 В для одновалентных ионов и 0,2 В для двухвалентных ионов, при условии, что концентрации ионов примерно равны.
3.4 В случае если вещество образует несколько комплексов с ионом металла, то определение констант устойчивости промежуточных соединений также возможно, но, как правило, не является необходимым для оценки опасности для окружающей среды. При работе с сильными комплексообразователями следует соблюдать осторожность для предупреждения перегрузки системы (т.е. ситуации, когда не все металлы находятся в форме комплексов).
3.5 Исследуемые показатели и единицы измерения
3.5.1 Потенциал Е ртутного капельного электрода определяется по соотношению:
Соотношение (1) предполагает, что коэффициенты диффузии свободных ионов металлов и комплексов являются равными.
3.5.2 Константа устойчивости (константа комплексообразования) в реакции комплексообразования
определяется как
Константа устойчивости зависит от температуры и коэффициента диффузии.
3.5.3 Комбинируя приведенные выше соотношения (1) и (3), получают следующую зависимость, действительную для обратимого восстановления комплексных соединений при 25°С:
4 Принцип метода
5 Достоверность испытания
5.1 Воспроизводимость
5.2 Чувствительность
5.3 Специфичность
5.4 Возможность стандартизации
Метод может быть стандартизирован.
5.5 Возможность автоматизации
Возможность автоматизации не оценивалась.
6 Стандартные вещества
6.1 Использование стандартных веществ во всех случаях при испытании нового вещества не требуется. Использование стандартных веществ необходимо для периодической калибровки метода и возможности сопоставления результатов в случае применения других методов.
6.2 В качестве стандартных веществ рекомендуется использовать следующие вещества:
- этилендиаминтетрауксусную кислоту (ЭДТА);
- нитрилоуксусную кислоту;
- тиогликолевую кислоту;
- о-нитрофенол.
7 Процедура испытания
7.1 Подготовка оборудования
Подробное описание полярографов представлено в [1]-[8].
7.2 Условия испытания
7.2.1 Используемая в капельном электроде ртуть должна быть технически чистой, прошедшей двойную перегонку. Перед использованием ртуть необходимо отфильтровать.
7.2.2 В тестируемый раствор добавляют необходимое количество буферного раствора [4]. За 10-15 мин до определения потенциальной кривой токового электрода необходимо проводить дезоксигенацию тестируемого раствора, используя азот высокой чистоты.
7.2.3 Тестируют как минимум четыре известные концентрации исследуемого химического вещества с известными концентрациями ионов металлов. Тестируемые растворы в целях удобства готовят непосредственно в кювете полярографа с помощью точной бюретки. Концентрация тестируемого вещества в растворе должна не менее чем в 25 раз превышать концентрацию ионов металла с тем, чтобы концентрация тестируемого вещества на поверхности электродов была фактически равна его концентрации в основном объеме раствора. Силу тока измеряют при приложенной разности потенциалов в диапазоне от минус 0,2 В до минус 1,0 В.
7.2.4 Для детектирования комплексов, образование которых происходит медленно, необходимо первоначально выдерживать тестируемые растворы в атмосфере азота в течение минимум 24 ч и для подтверждения окончания комплексообразования на момент основного испытания проводить предварительное тестирование достаточного количества проб.
7.2.5 Следует внимательно оценить необходимость применения буферных растворов и поверхностно-активных веществ для подавления полярографических максимумов в целях предупреждения нежелательного влияния на контролируемый химической реакцией ток, а также на наклон полярографической волны.
8 Проведение испытания
Испытание проводят при температуре (25±0,2)°С. Описание проведения испытания представлено в [1]-[8].
9 Данные и отчет о проведении испытания
9.1 Обработка результатов
9.2 Отчет о проведении испытания
Кроме того, в отчете о проведении испытания следует указать:
- тип поляризуемого микроэлектрода, тип стандартного электрода и, в случае использования ртутного капельного электрода, скорость потока в миллиграммах в секунду и время капания;
- использование ИК-коррекции;
- использование подавителей максимумов;
- поддерживающий электролит;
- буферный раствор;
- температуру, при которой проводилось измерение;
- общую ионную силу тестируемого раствора;
- используемую процедуру испытания (метод с пилотным ионом, метод добавок или т.п.);
- технические трудности, возникавшие при проведении испытания;
- оценку точности;
- используемый полярографический метод (например, DС-, AC-полярография, полярография с однократной разверткой, радиочастотная полярография или квадратно-волновая полярография).
9.3 Интерпретация и оценка результатов
9.3.1 Установленные константы устойчивости новых веществ сравнивают с приведенными в литературе значениями констант устойчивости стандартных веществ (раздел 6) и, следовательно, используют для оценки силы их комплексообразующей способности.
9.3.2 Испытание имеет физический смысл, если
a) значение константы устойчивости является положительным и
b) стандартная ошибка меньше, чем полученное значение константы (в качестве критерия используется t-тест).
9.3.3 Если данные не являются статистически значимыми, то следует использовать методы, основанные на других физико-химических принципах, такие как спектрофотометрия или спектроскопия ядерно-магнитного резонанса.
Приложение ДА
(справочное)
Сопоставление структуры настоящего стандарта со структурой примененного в нем международного документа
Таблица ДА.1
|
|
Структура настоящего стандарта | Структура международного документа |
Раздел 1 | Раздел 1 |
- | Раздел 2 |
Раздел 2 | Приложение A |
Раздел 3 |
|
Раздел 4 |
|
Раздел 5 |
|
Раздел 6 | Приложение В |
Раздел 7 |
|
Раздел 8 | Раздел 3 |
Библиография | Раздел 4 |
Библиография
|
|
[1] | A.I.Vogel and J.Basset, Vogel’s Textbook of Qualitative Inorganic Analysis, Chapter XIX, 4 Ed., Wiley, New York (1978) [А.И.Фогель и Д.Бассет, Учебное пособие "Качественный неорганический анализ", глава XIX, 4-е изд., М., Нью-Йорк (1978)] |
[2] | D.R.Crow, J.V.Westwood, "The Study of Complexed Metal Ions by Polarpgraphic Methods", Quart. Rev., 19, 51 (1965) [Д.Р.Кроу, Д.Ж. Вествуд "Изучение комплексных соединений металлов полярографическим методом". Кварт. откр., 19, 51 (1965)] |
[3] | H.Irving "The Stability of metal Complexes and their Measurement Polagraphically", in Advances in Polarography - Proccedings of the 2 International Congress, I.S.Langmuir (ed.), Pergamon Press (1960) (Х.Ирвинг "Стабильность комплексов металлов и их измерения полярографией" Достижения в полярографии - 2-й Международный конгресс, (ред.), Пергамон Пресс (1960) |
[4] | D.D.Perrin, B.Dempsey, Buffer for pH and Metal Ion Controls, Chapman and Hall, London (1974) |
[5] | "Stability Constants of Metal-ion Complexes", Part B: Organic Ligands, Compiled by D.D.Perrin, IUPAC Publication on Chemical Data Series, No. 22, Pergamon Press (1979) |
[6] | B.Grabaric, M.Tkalcec, I.Piljac, I.Filipovic, V.Simeon "Numerical Evaluation of Complex Stability Constants for Polarographic Data for Quasi-Reversible Processes", Anal. C him. Acta, 74, 147, (1975). |
[7] | I.Piljac, B.Grabaric, I.Filipovic, "Improved Technique for Determination of Stability Constants by Polarographic Method", J.Electroanal. Chem. Interfacial Electrochem., 42, 433 (1973) (И.Филипович, "Улучшенная методика определения стабильности полярографическим методом", 42, 433 (1973)) |
[8] | D.D.De Ford, D.N.Hume, "The Determination of Consecutive Formation Constants of Complex Ions from Polarographic Data", J. Amer. Chem. Soc., 73, 532 1 (1951) [Д.Д.Де Форд, Д.Н.Хьюм, "Определение последовательности образования постоянных комплексных ионов из полярографических данных", Ю. Амер. хим. соц., 73, 532 1 (1951)] |
|
|
УДК 658.382.3:006.354 | МКС 13.020.01 |
| |
Ключевые слова: методы испытаний, химическая продукция, определение, комплексообразование, вода, полярографический метод |