ГОСТ 16465-70 Сигналы радиотехнические измерительные. Термины и определения.
ГОСТ 16465-70
Группа Э00
МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ
СИГНАЛЫ РАДИОТЕХНИЧЕСКИЕ ИЗМЕРИТЕЛЬНЫЕ
Термины и определения
Measuring radiotechnical signals.
Terms and definitions
МКС 01.040.33
33.140
Дата введения 1971-07-01
Постановлением Комитета стандартов, мер и измерительных приборов при Совете Министров СССР от 6 ноября 1970 года N 1678 дата введения установлена с 01.07.71
ИЗДАНИЕ с Изменением N 1, утвержденным в июле 1973 года (ИУС 8-73)
Настоящий стандарт устанавливает термины и определения основных понятий в области измерительных радиотехнических сигналов, получаемых с помощью измерительных генераторов тока и напряжения.
Стандарт не распространяется на сигналы, используемые в радиоэлектронных системах для передачи и приема телевизионной, радиолокационной, телеметрической и другой информации.
Термины, установленные настоящим стандартом, обязательны для применения в документации всех видов, учебниках, учебных пособиях, технической и справочной литературе.
Для каждого понятия установлен один стандартизованный термин, напечатанный полужирным шрифтом. Недопустимые к применению термины-синонимы приведены в стандарте в качестве справочных, обозначены "Ндп" и напечатаны курсивом.
Для отдельных стандартизованных терминов в стандарте приведены в качестве справочных их краткие формы, напечатанные светлым шрифтом, которые разрешается применять в случаях, исключающих возможность различного толкования понятий, установленных настоящим стандартом. Если существенные признаки понятия выражены в самом термине, определение не приведено и в графе "Определение" поставлен прочерк.
Математические формулы и использованные в них буквенные обозначения величин приведены в стандарте в качестве справочных.
|
|
|
|
|
|
Термин
| Определение
| Математическая формула и обозначение величины | |||
1. Измерительный радиотехнический сигнал
Сигнал
Ндп. Тест-сигнал. Тестовый сигнал. Испытательный сигнал. Пробный сигнал. Воздействие. Колебание. Процесс | Электрическое напряжение или ток, изменяющиеся по времени, с заранее известными характеристиками, используемые для измерения характеристик радиотехнических цепей и их контроля | , где - напряжение или ток; - время | |||
2. Мгновенное значение сигнала
Ндп. Отсчет сигнала
| Значение сигнала в заданный момент времени
| , где - заданный момент времени | |||
3. Максимальное значение сигнала
Ндп. Амплитуда
| Наибольшее мгновенное значение сигнала на протяжении заданного интервала времени | , где - заданный интервал времени | |||
4. Минимальное значение сигнала
| Наименьшее мгновенное значение сигнала на протяжении заданного интервала времени | , | |||
5. Постоянная составляющая сигнала
| Среднее значение сигнала
| , где - интервал времени усреднения | |||
6. Переменная составляющая сигнала
Ндп. Центрированный сигнал
| Разность между сигналом и его постоянной составляющей | ||||
7. Пиковое отклонение "вверх"
| Наибольшее мгновенное значение переменной составляющей сигнала на протяжении заданного интервала времени | ||||
8. Пиковое отклонение "вниз"
| Наименьшее мгновенное значение переменной составляющей сигнала на протяжении заданного интервала времени, взятое по модулю | ||||
9. Размах сигнала
| Разность между максимальным и минимальным значениями сигнала на протяжении заданного интервала времени | ||||
10. Средневыпрямленное значение сигнала
Ндп. Среднее значение сигнала | Среднее значение модуля сигнала
| ||||
11. Среднеквадратичное значение сигнала
Ндп. Среднеквадратичное значение. Действующее значение. Эффективное значение | Корень квадратный из среднего значения квадрата сигнала
| ||||
12. Средняя мощность сигнала, выделяемая на сопротивлении 1 ом
| Среднее значение квадрата сигнала
| ||||
13. Энергия сигнала, выделяемая на сопротивление 1 ом | Интеграл из квадрата сигнала по всей оси времени | ||||
Характеристики импульсов
| |||||
14. Спектральная функция импульса
| Комплексная функция, представляющая собой преобразование Фурье от импульса
| где - круговая частота; - импульс; - действительная часть спектральной функции импульса; - мнимая часть спектральной функции импульса | |||
15. Модуль спектральной функции импульса
Ндп. Амплитудный спектр импульса
| -
| ||||
16. Аргумент спектральной функции импульса
Ндп. Фазовый спектр импульса | -
| ||||
Характеристики периодических сигналов
| |||||
17. Период периодического сигнала
Период
| Параметр, равный наименьшему интервалу времени, через который повторяются мгновенные значения периодического сигнала | ||||
18. Частота периодического сигнала
Частота
| Параметр, представляющий собой величину, обратную периоду периодического сигнала | ||||
19. Комплексный спектр периодического сигнала
| Комплексная функция дискретного аргумента, равного целому числу значений частоты периодического сигнала, представляющая собой значения коэффициентов комплексного ряда Фурье для периодического сигнала | , где - любое целое число | |||
20. Амплитудный спектр периодического сигнала
Спектр
| Функция дискретного аргумента, представляющая собой модуль комплексного спектра периодического сигнала | ||||
21. Фазовый спектр периодического сигнала
| Функция дискретного аргумента, представляющая собой аргумент комплексного спектра периодического сигнала | ||||
22. Гармоника
| Гармонический сигнал с амплитудой и начальной фазой, равными соответственно значениям амплитудного и фазового спектра периодического сигнала при некотором значении аргумента | , где - номер гармоники | |||
Характеристики случайных сигналов
| |||||
23. Одномерная плотность вероятности
Ндп. Дифференциальный закон распределения вероятности. Распределение амплитуд
| Функция, равная пределу отношения вероятности пребывания случайного сигнала в некотором интервале значений к ширине этого интервала при стремлении его к нулю, причем ее аргументом является значение, к которому стягивается интервал | ,
где - вероятность; - ширина интервала. | |||
24. Корреляционная функция
Ндп. Автокорреляционная функция
| Функция, равная среднему значению произведения переменной составляющей случайного сигнала и такой же переменной составляющей, но запаздывающей на заданное время.
Примечание. Корреляционная функция характеризует статистическую связь между мгновенными значениями случайного сигнала, разделенными заданным интервалом времени
| , где - время запаздывания (35) | |||
25. Нормированная корреляционная функция
Ндп. Коэффициент корреляции | Функция, равная отношению корреляционной функции случайного сигнала к его дисперсии | ||||
26. Энергетический спектр
Ндп. Спектральная плотность
| Функция, представляющая собой преобразование Фурье от корреляционной функции, аргументом которой является частота | ||||
Характеристики взаимодействия сигналов
| |||||
27. Отношение сигнал - помеха
| Отношение величин, характеризующих интенсивности сигнала и помехи.
Примечание. В качестве величин, характеризующих интенсивности сигнала и помехи, берут их средние мощности, среднеквадратические значения, пиковые отклонения, энергии и т.п. Способ определения этих величин должен всегда оговариваться особо
|
| |||
28. Коэффициент модуляции "вверх"
Ндп. Коэффициент глубины модуляции "вверх"
| Коэффициент, равный отношению пикового отклонения "вверх" закона модуляции к его постоянной составляющей при амплитудной модуляции
| , где - пиковое отклонение "вверх" закона модуляции: - постоянная составляющая закона модуляции: - закон модуляции | |||
29. Коэффициент модуляции "вниз"
Ндп. Коэффициент глубины модуляции "вниз"
| Коэффициент, равный отношению пикового отклонения "вниз" закона модуляции к его постоянной составляющей при амплитудной модуляции.
Примечание. Если , как, например, при гармоническом законе модуляции, то величина называется коэффициентом модуляции
| , где - пиковое отклонение "вниз" закона модуляции | |||
30. Девиация частоты "вверх"
| Пиковое отклонение "вверх" закона модуляции при частотной модуляции
| , где - переменная составляющая закона модуляции при частотной модуляции; - закон модуляции при частотной модуляции (мгновенная частота); - постоянная составляющая закона модуляции при частотной модуляции (средняя частота) | |||
31. Девиация частоты "вниз"
| Пиковое отклонение "вниз" закона модуляции при частотной модуляции.
Примечание. Если
как, например, при гармоническом законе модуляции, то величина называется девиацией частоты | ||||
32. Индекс угловой модуляции
Индекс модуляции | Пиковое отклонение закона модуляции фазомодулированного сигнала при гармоническом законе модуляции | ,
где - закон (гармонический) модуляции при фазовой модуляции; - частота модулирующего сигнала; - начальная фаза модулирующего сигнала; - начальная фаза модулируемого сигнала | |||
Характеристики взаимосвязи сигналов
| |||||
33. Взаимокорреляционная функция
Ндп. Кросскорреляционная функция
| Функция, равная среднему значению произведения переменной составляющей одного случайного сигнала и запаздывающей на заданное время переменной составляющей другого случайного сигнала.
Примечание. Взаимнокорреляционная функция характеризует статистическую связь между мгновенными значениями двух случайных сигналов, разделенными заданным интервалом времени
| ||||
34. Взаимный энергетический спектр
| Функция, представляющая собой преобразование Фурье от взаимнокорреляционной функции, аргументом которой является частота | ||||
35. Время запаздывания
| Параметр, равный значению временного сдвига одного из сигналов, при котором достигается тождественное равенство его другому сигналу с точностью до постоянного множителя и постоянного слагаемого
Примечание. Если формы сигналов различны, определяется эквивалентное время запаздывания: для случайных сигналов как абсцисса максимума взаимнокорреляционной функции, для импульсов как интервал времени между моментами первого достижения каждым из сигналов уровня, равного половине максимального значения
| Параметр в выражении , где , - константы. Примечание. Параметр называется временем опережения | |||
36. Фазовый сдвиг
Ндп. Сдвиг фаз
| Модуль разности начальных фаз двух гармонических сигналов одинаковой частоты | , где и - начальные фазы | |||
Характеристики искажений сигналов
| |||||
37. Коэффициент гармоник
Ндп. Коэффициент нелинейных искажений. Клирфактор
| Коэффициент, характеризующий отличие формы данного периодического сигнала от гармонической, равный отношению среднеквадратического напряжения суммы всех гармоник сигнала, кроме первой, к среднеквадратическому напряжению первой гармоники | , где - амплитуда -й гармоники сигнала | |||
38. Относительное отклонение сигнала от линейного закона
| Коэффициент, равный отношению абсолютного отклонения (40) данного сигнала от прямой линии, соединяющей мгновенные значения сигнала, соответствующие началу и концу заданного интервала времени к максимальному значению сигнала на этом же интервале | , где - абсолютное отклонение (40) сигналов | |||
39. Коэффициент нелинейности сигнала
| Коэффициент, равный отношению размаха производной сигнала на заданном интервале времени к максимальному значению производной на этом же интервале
| , где | |||
40. Абсолютное отклонение сигналов
| Максимальное значение разности мгновенных значений сигналов, взятых в один и тот же момент времени на протяжении заданного интервала времени |
АЛФАВИТНЫЙ УКАЗАТЕЛЬ ТЕРМИНОВ
|
|
Амплитуда | (3) |
Аргумент спектральной функции импульса | 16 |
Воздействие | (1) |
Время запаздывания | 35 |
Гармоника | 22 |
Девиация частоты "вверх" | 30 |
Девиация частоты "вниз" | 31 |
Закон распределения вероятности дифференциальный | (23) |
Значение действующее | (11) |
Значение сигнала максимальное | 3 |
Значение сигнала мгновенное | 2 |
Значение сигнала минимальное | 4 |
Значение сигнала средневыпрямленное | 10 |
Значение сигнала среднее | (10) |
Значение сигнала среднеквадратичное | 11 |
Значение среднеквадратичное | (11)
|
Значение эффективное
| (11) |
Индекс модуляции | 32 |
Индекс модуляции угловой | 32 |
Клирфактор | (37) |
Колебание | (1) |
Коэффициент гармоник | 37 |
Коэффициент нелинейности сигнала | 39 |
Коэффициент нелинейных искажений | (37) |
Коэффициент корреляции | (25) |
Коэффициент модуляции "вверх" | (28) |
Коэффициент модуляции "вниз" | 29 |
Коэффициент глубины модуляции "вверх" | (28) |
Коэффициент глубины модуляции "вниз" | (29) |
Модуль спектральной функции импульса | 15 |
Мощность сигнала, выделяемая на сопротивлении 1 ом, средняя | 12 |
Отклонение пиковое "вверх" | 7 |
Отклонение пиковое "вниз" | 8 |
Отклонение сигнала от линейного закона относительное | 38 |
Отклонение сигнала абсолютное | 40 |
Отношение сигнал - помеха | 27 |
Отсчет сигнала | (2) |
Период | 17 |
Период периодического сигнала | 17 |
Плотность вероятности одномерная | 23 |
Плотность мощности спектральная | (26) |
Процесс | (1) |
Размах сигнала | 9 |
Распределение амплитуд | (23) |
Сдвиг фазы | (36) |
Сдвиг фазовый | 36 |
Сигнал испытательный | (1) |
Сигнал пробный | (1) |
Сигнал радиотехнический измерительный | 1 |
Сигнал тестовый | 1 |
Сигнал центрированный | (6) |
Составляющая сигнала переменная | 6 |
Составляющая сигнала постоянная | 5 |
Спектр | 20 |
Спектр импульса амплитудный | (15) |
Спектр импульса фазовый | (16) |
Спектр периодического сигнала амплитудный | 20 |
Спектр периодического сигнала комплексный | 19 |
Спектр периодического сигнала фазовый | 21 |
Спектр энергетический | 26 |
Спектр энергетический взаимный | 34 |
Тест-сигнал | (1) |
Функция автокорреляционная | (24) |
Функция взаимнокорреляционная | 33
|
Функция импульса спектральная | 14 |
Функция корреляционная | 24 |
Функция корреляционная нормированная | 25 |
Функция кросскорреляционная | (33) |
Частота | 18 |
Частота периодического сигнала | 18 |
Энергия сигнала, выделяемая на сопротивлении 1 ом | 13 |
(Измененная редакция, Изм. N 1).
ПРИЛОЖЕНИЕ 1
Справочное
Термины, аналитические и графические определения номинальных форм и параметров некоторых импульсов
|
|
|
|
Термин
| Графическое определение | Аналитическое определение
| Параметр
|
1. Прямоугольный импульс
| - амплитуда прямоугольного импульса; - длительность прямоугольного импульса; Примечание. Отрезок называется фронтом прямоугольного импульса, отрезок - вершиной прямоугольного импульса, отрезок - срезом прямоугольного импульса | ||
2. Трапецеидальный импульс
| - амплитуда трапецеидального импульса; - длительность трапецеидального импульса; - длительность фронта трапецеидального импульса; - длительность среза трапецеидального импульса. Примечание. Отрезок называется фронтом трапецеидального импульса, отрезок - вершиной трапецеидального импульса, отрезок - срезом трапецеидального импульса | ||
3. Экспоненциаль- ный импульс
| ; | - амплитуда экспоненциального импульса; - постоянная времени экспоненциального импульса | |
4. Пилообразный импульс
| - амплитуда пилообразного импульса; - длительность пилообразного импульса. Примечание. Отрезок называется прямым ходом пилообразного импульса, отрезок - обратным ходом пилообразного импульса | ||
5. Треугольный импульс
| - амплитуда треугольного импульса; - длительность фронта треугольного импульса; - длительность среза треугольного импульса; - длительность треугольного импульса. Примечания:
1. Отрезок называется фронтом треугольного импульса, отрезок - срезом треугольного импульса. 2. Интервал времени нарастания фронта между уровнями 0; 1 * и 0,9 связан с соотношением (0,1-0,9)=0,8 . Интервал времени нарастания среза между уровнями 0,1 и 0,9 связан с соотношением (0,9-0,1)=0,8 . | ||
| |||
6. Колоколообраз- ный импульс
| - амплитуда колоколообразного импульса; - интервал времени между точками перегиба колоколообразного импульса. Примечания:
1. Значение параметра определяется также по уровню 0,606 2. Интервал времени (0,5) на уровне 0,5 связан с соотношением (0,5)=2,35 . | ||
7. Косинусквадрат- ный импульс
| ; ; ; | - амплитуда косинусквадратного импульса; - длительность косинусквадратного импульса. Примечание. Значение параметра определяется также по уровню 0,5 |
(Измененная редакция, Изм. N 1).
ПРИЛОЖЕНИЕ 2
Справочное
Термины, аналитические и графические определения форм и параметров некоторых периодических сигналов
|
|
|
|
Термин
| Графическое определение | Аналитическое определение
| Параметр
|
1. Гармонический сигнал
| ; | - амплитуда гармоничного сигнала; - круговая частота; - начальная фаза | |
2. Периодическая последовательность прямоугольных импульсов.
Примечание. При
периодическая последовательность прямоугольных импульсов называется меандром | - амплитуда прямоугольного импульса; - длительность прямоугольного импульса; - период. Примечание. Отношение называется скважностью, а обратная величина - коэффициентом заполнения | ||
Примечание. Периодический сигнал может быть образован путем повторения импульсов. Соответствующие термины и определения для такого сигнала вводятся так же, как и для импульсов (см. приложение 1) с добавление еще одного параметра - значения периода или частоты и указания на периодический характер сигнала. |
(Измененная редакция, Изм. N 1).
ПРИЛОЖЕНИЕ 3
Справочное
Термины, аналитические и графические определения форм и параметров некоторых одномерных плотностей вероятности
|
|
|
|
Термин | Графическое определение | Аналитическое определение | Параметр |
1. Нормальная | - среднеквадратичное значение сигнала с нормальной плотностью вероятности;
- постоянная составляющая сигнала с нормальной плотностью вероятности | ||
2. Экспоненциальная |
| ; ; | - постоянная составляющая сигнала с экспоненциальной плотностью вероятности |
3. Равномерная |
| - размах сигнала с равномерной плотностью вероятности | |
Примечание. Термины и определения одномерных плотностей вероятности других форм вводятся аналогичным образом.
|
ПРИЛОЖЕНИЕ 4
Справочное
Примерные виды осциллограмм некоторых импульсов, способов определения
их основных параметров и параметров искажений
|
|
|
|
Математическая модель (см. приложение 1) | Примерный вид осциллограммы | Основные параметры (см. прило- жение 1) | Параметры искажений |
1. Прямо- угольный импульс | , | - длительность фронта прямоугольного импульса; - длительность среза прямоугольного импульса; - выброс на вершине прямоугольного импульса; - выброс в паузе прямоугольного импульса; - неравномерность вершины прямоугольного импульса. Примечание. Значение параметра находится путем продления плоской части вершины до пересечения с фронтом прямоугольного импульса | |
2. Трапецеи- дальный импульс | , , , | - неравномерность вершины трапецеидального импульса; - нелинейность фронта трапецеидального импульса; - нелинейность среза трапецеидального импульса; | |
3. Экспонен- циальный импульс | Примечание. Значение параметра рассчитывается по формуле | , | - длительность фронта экспоненциального импульса; - неэкспоненциальность среза |
4. Пилооб- разный импульс | , | - длительность обратного хода пилообразного импульса; - нелинейность пилообразного импульса. Примечание. - вспомогательная величина, используемая при нормировании. ; - заданные коэффициенты | |
Примечание. Если пилообразный сигнал используется для получения развертки, нелинейность определяется в соответствии с определением понятия 39.
| |||
|
| - коэффициент нелинейности развертки, где , | |
Примечание. Наряду с параметрами искажений допускается использование безразмерных коэффициентов, представляющих собой отношения приведенных в таблице параметров искажений к соответствующим основным параметрам. Наименования этих коэффициентов образуются путем добавления слова "относительный" (ая) к наименованиям параметров искажений, например:
- относительная длительность фронта прямоугольного импульса; - относительная неравномерность вершины прямоугольного импульса и т.п.
|
ПРИЛОЖЕНИЕ 5
Справочное
ПОЯСНЕНИЯ К ТЕРМИНАМ, ВСТРЕЧАЮЩИМСЯ В СТАНДАРТЕ
СИГНАЛ - изменяющаяся физическая величина, отображающая сообщение.
Примечания:
1. Особенностью радиотехнических сигналов является использование электрических величин тока, напряжения, напряженности электромагнитного поля. Для этих сигналов характерно то, что они заранее неизвестны получателю сообщения. Особенностью измерительных радиотехнических сигналов, получаемых с помощью измерительных генераторов сигналов, является то, что их свойства известны заранее. После прохождения через исследуемую цепь (с неизвестными характеристиками) сигнал изменяется. Сравнивая сигналы на входе и выходе цепи можно измерить ее характеристики.
2. В теоретических исследованиях и инженерных расчетах используется математическая модель сигнала, представляющая собой математическое идеализированное описание сигнала, сохраняющее те его свойства, которые являются существенными для решаемой задачи. Для математического описания сигнала используются математические характеристики (П.2*), представляющие собой функции, параметры функций и их функционалы.
________________
* При ссылках на термины и определения, помещенные в данном приложении к стандарту, перед номером в скобках ставится буква П.
________________
* При ссылках на термины и определения, помещенные в данном приложении к стандарту, перед номером в скобках ставится буква П.
ДИСПЕРСИЯ - среднее значение квадрата переменной составляющей случайного сигнала.
Рассмотренные выше функции являются, как правило, действительными функциями аргумента, в противном случае сделаны специальные оговорки (см., например, 14.19).
Приложение 6
Справочное
Классификация измерительных радиотехнических сигналов
Классификация измерительных радиотехнических сигналов
|
|
|
Термин | Определение | Математическая формула и обозначение величины |
1. Характеристики сигналов | Количественные данные, относящиеся к понятиям, характеризующим данные сигналы |
|
2. Математические характеристики сигналов | Характеристики сигналов, выражаемые с помощью функций, параметров функций и функционалов при математическом описании сигналов |
|
3. Общие характеристики сигнала | Математические характеристики сигнала, рассматриваемого как единое целое |
|
4. Детерминиро- ванный сигнал | Сигнал, мгновенные значения которого в любой момент времени известны.
Примечание. Общие характеристики детерминированного сигнала могут быть найдены расчетным путем
|
|
5. Импульсный сигнал
Импульс | Детерминированный сигнал конечной энергии, существенно отличный от нуля в течение ограниченного интервала времени, соизмеримого с временем установления переходного процесса в системе, для воздействия на которую этот сигнал предназначен. |
|
| Примечания:
1. Сигнал, представляющий собой последовательность конечного известного числа импульсов одинаковой формы, следующих друг за другом через одинаковые интервалы времени, называется пачкой импульсов. | , где - целое число;
- высота -го импульса;
- интервал следования |
| 2. Сигнал, состоящий из импульсов, число, форма и значения параметров которых известны, называется кодовой группой импульсов | , где - целое число |
6. Периодический сигнал | Детерминированный сигнал, мгновенные значения которого повторяются через равные промежутки времени | , где - любое целое число |
7. Случайный сигнал | Сигнал, мгновенные значения которого являются случайными величинами.
Примечание. Случайный сигнал, любая вероятная характеристика которого, полученная усреднением по множеству возможных реализации с вероятностью, сколь угодно близкой к единице, равна временному среднему, полученному усреднением за достаточно большой промежуток времени одной реализаций, называется эргодическим. Рассмотренные выше характеристики случайного сигнала определены для эргодического сигнала
|
|
8. Стационарный случайный сигнал | Случайный сигнал, у которого плотность вероятности любой совокупности мгновенных значений не изменяется при любом сдвиге этой совокупности во времени
Примечание. Случайный сигнал, у которого среднее значение и дисперсия не зависят от времени, а корреляционная функция зависит только от времени запаздывания, называется стационарным в широком смысле
| где - произвольный интервал времени |
9. Нестационарный случайный сигнал | Случайный сигнал, у которого плотность вероятности некоторой совокупности мгновенных значений изменяется при некотором сдвиге этой совокупности во времени | |
10. Взаимные характеристики сигналов | Математические характеристики нескольких сигналов |
|
11. Характеристики взаимодействия сигналов | Взаимные характеристики сигналов, описывающие их взаимодействие при образовании из них нового сигнала.
Примечание. Сигнал, образованный в результате взаимодействия нескольких сигналов, является детерминированным, если детерминированы все взаимодействующие сигналы; в противном случае он является случайным
|
|
12. Аддитивный сигнал | Сигнал, мгновенные значения которого являются суммой мгновенных значений двух или более сигналов, взятых в один и тот же момент времени
Примечание. Если один из сигналов, образующих аддитивный сигнал, считается полезным, а другие - мешающими, то мешающие сигналы иногда называют помехой или шумом
| , где - целое число |
13. Мультиплика- тивный сигнал | Сигнал, мгновенные значения которого пропорциональны произведению мгновенных значений двух или более сигналов, взятых в один и тот же момент времени | , где - целое число =const |
14. Модулирован- ный сигнал | Сигнал, являющийся результатом взаимодействия двух или более сигналов, называемого модуляцией
Примечания:
1. В данном стандарте рассматривается простейший случай взаимодействия двух сигналов с модуляцией по одному параметру |
|
| 2. Модуляцией называется физический процесс получения сигнала, математическое описание которого может быть получено заменой параметра в математическом описании модулируемого сигнала на функцию от модулирующего сигнала. Обычно эта функция (закон модуляции) является линейной. При этом закон модуляции характеризуется такими же параметрами и функционалами, как и модулирующий сигнал | Пусть - модулируемый сигнал (переносчик); - модулирующий сигнал.
Тогда при модуляции по параметру
- модулированный сигнал;
- закон модуляции.
Если - линейная функция, то , где =const, например, постоянная составляющая;
= const - коэффициент (крутизна модуляционной характеристики).
|
| 3. Чаще всего в качестве модулируемого сигнала используется гармонический сигнал или периодическая последовательность прямоугольных импульсов.
Если модулируемый сигнал является гармоническим, в зависимости от параметра, подвергаемого воздействию со стороны модулирующего сигнала (амплитуды, частоты, начальной фазы) различают соответственно амплитудную (AM), частотную (ЧМ) и фазовую (ФМ) модуляции. Соответствующие модулированные сигналы называются амплитудно-модулированным (AM - сигнал), частотно-модулированным (ЧМ - сигнал) и фазово-модулированным (ФМ - сигнал). Часто частотная и фазовая модуляция именуются общим термином угловая модуляция
|
|
15. Характеристики взаимосвязи сигналов | Взаимные характеристики нескольких взаимосвязанных сигналов, не образующих нового сигнала |
|
16. Метрологичес- кие характеристики сигнала | Количественные данные, определяемые в результате измерения, устанавливающие степень соответствия сигнала заранее заданному математическому описанию |
|
17. Основные параметры | Метрологические характеристики сигнала, имеющие тот же смысл и наименования, что и параметры математического описания сигнала, для воспроизведения которого предназначен данный измерительный генератор.
Примечание. В измерительных генераторах, как правило, допускается возможность произвольной установки основных параметров сигнала в пределах определенных диапазонов значений
|
|
18. Характеристики искажений | Метрологические характеристики сигнала, описывающие степень несоответствия сигнала заранее заданному математическому описанию, определяемые таким образом, чтобы их значения обращались в нуль, если сигнал в точности соответствует требуемому математическому описанию |
|
19. Коэффициент искажений | Характеристика искажений, представляющая собой безразмерный коэффициент, описывающий отличие реального сигнала на выходе измерительного генератора от заранее заданного математического описания в целом и зависящий от выбранного критерия сравнения сигналов (критерий абсолютного отклонения, критерий среднеквадратического отклонения и т.п.) |
|
20. Параметры искажений | Характеристики искажений, представляющие собой параметры, отличающиеся от основных параметров, описывающие отличие реального сигнала на выходе измерительного генератора от заранее заданного математического описания более детально, чем коэффициент искажений |
|
Текст документа сверен по:
официальное издание
Телекоммуникации.
Аудио- и видеотехника.
Термины и определения.
Часть 1: Сборник стандартов. -
М.: Стандартинформ, 2005