ГОСТ Р 8.744-2011/ISO/TR 14999-3:2005
Группа Т86.10
НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ
Государственная система обеспечения единства измерений
ОПТИКА И ФОТОНИКА. ИНТЕРФЕРЕНЦИОННЫЕ ИЗМЕРЕНИЯ ОПТИЧЕСКИХ ЭЛЕМЕНТОВ И СИСТЕМ
Часть 3
Калибровка и аттестация интерферометров, методика измерений оптических волновых фронтов
State system for ensuring the uniformity of measurements. Optics and photonics. Interferometric, measurement of optical elements and systems. Part 3. Calibration and validation of interferometers, methodology of optical uavefronts measurement
ОКС 37.020
Дата введения 2013-03-01
Предисловие
Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. N 184-ФЗ "О техническом регулировании", а правила применения национальных стандартов Российской Федерации - ГОСТ Р 1.0-2004* "Стандартизация в Российской Федерации. Основные положения"
Сведения о стандарте
1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием "Всероссийский научно-исследовательский институт метрологической службы" (ФГУП "ВНИИМС")
2 ВНЕСЕН Техническим комитетом по стандартизации ТК 53 "Основные нормы и правила по обеспечению единства измерений" Федерального агентства по техническому регулированию и метрологии
3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 13 декабря 2011 г. N 1067-ст
4 Настоящий стандарт идентичен международному документу ISО/TR 14999-3:2005* "Оптика и фотоника. Интерферометрическое измерение оптических элементов и систем. Часть 3. Калибровка и валидация оборудования для интерферометрического испытания и измерений" (ISO/TR 14999-3:2005 "Optics and photonics - Interferometric measurement of optical elements and optical systems. Part 3: Calibration and validation of interferometric test equipment and measurements")
5 ВВЕДЕН ВПЕРВЫЕ
Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячно издаваемом информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет
Введение
Техническим комитетом ИСО (ISO/TC 172/SC1) была подготовлена и опубликована под общим названием ИСО 10110 "Оптика и фотоника - Подготовка технической документации на оптические элементы и системы" серия международных стандартов "Обозначения в технической документации характеристик оптических элементов и систем", причем особое внимание уделено части 5 "Допустимые отклонения формы поверхности" и части 14 "Допустимые отклонения волнового фронта".
После опубликования серии стандартов и особенно упомянутых двух частей экспертам стало очевидно, что необходимы дополнительная документация и информация о представлении изготовленных оптических элементов и систем с допустимыми отклонениями. Поэтому ISO/TC 172/SC1 подготовил и опубликовал Технический доклад под названием "Интерферометрия волновых фронтов и форм поверхностей оптических элементов".
При обсуждении было констатировано, что Технический доклад или стандарт впервые имеют отношение к волновой оптике, т.е. базируются на физической оптике, а не геометрической. Поэтому пояснены только основные аспекты, представляющие наибольшие трудности для понимания.
С учетом складывавшейся ситуации, когда в документах ИСО не обсуждались проблемы интерферометрии, естественным было желание сделать изложение предельно доступным. Возникла дискуссия по вопросу о целесообразности обсуждения таких важнейших направлений, как интерференционная микроскопия (для наблюдения и описания микрошероховатостей поверхностей оптических элементов), интерферометрия сдвига (например, для описания подвергшихся коррекции оптических систем), многолучевая интерферометрия, формирование и считывание изображений в когерентном излучении или методы обращения волнового фронта. Решено было отразить и такие методы, как классическая двулучевая интерферометрия, а также с распространенными методиками типа голографической интерферометрии, муаровым методом и профилометрией, наряду с Фурье-спектроскопией и поляриметрией, которые дополняют микроскопическую интерферометрию (микроинтерферометрию).
Данный стандарт (ИСО 14999) посвящен методам оценки качества оптических элементов и систем в целом, имеющих отношение к производимым ими (элементами и системами) деформациям волнового фронта. Эти искажения распределены по шкале пространственных частот, однако в данном стандарте (ИСО 14999) рассматриваются деформации волнового фронта только в низко- и среднечастотном диапазонах спектра пространственных частот. Высокочастотный участок спектра может быть измерен только с помощью микроскопа, с использованием результатов измерений рассеянного света или вообще неоптических способов зондирования поверхности.
1 Область применения
Настоящий стандарт рассматривает источники погрешностей и деление их на симметричные и несимметричные части. В нем также описываются критерии оценки надежности результатов измерений по качеству физически реализуемой эталонной поверхности и создание методик испытаний, обеспечивающих достижение абсолютной калибровки.
2 Термины и определения
В настоящем стандарте применены следующие термины и определения:
2.1 идеальная форма: Математическое описание формы оптической поверхности.
2.2 погрешность поверхности: Отклонение контролируемой поверхности от идеальной формы, включая воздействия, оказываемые силой тяжести и креплением.
2.3 погрешность волнового фронта: Отклонение формы волнового фронта, соответствующее отклонению поверхности, определяемое по интерферограмме.
2.4 абсолютное измерение: Методика, выявляющая отклонение волнового фронта контролируемого объекта относительно идеальной формы, а не физически реализованной поверхности.
2.5 квазиабсолютное измерение: Методика, выявляющая отклонение формы волнового фронта, ограниченное определенными источниками, но также относительно идеальной формы, а не физически реализованной поверхности.
3 Систематическое исследование контрольного оборудования, измерительной установки и окружающей среды как источников погрешностей
3.1 Общие сведения
Как известно, целью измерения является определение значения измеряемой величины, причем в контексте данного стандарта эта оптическая величина или параметр, как, например, форма волнового фронта, связана с характеристиками оптических элементов или оптических систем. Измерение начинается с выбора подходящей измеряемой величины, определения метода и соответствующей методики выполнения измерений.
Любой результат измерения в силу несовершенства самого процесса измерения отягощен погрешностью измерений. Вследствие неопределенности измерений истинное значение измеряемой величины всегда неизвестно.
Неопределенность измерения содержит много составляющих. Некоторые из них определяются статистическими методами и характеризуются экспериментально получаемыми стандартными отклонениями (часто именуемыми стандартными неопределенностями). Другие составляющие неопределенности определяются экспериментальным путем или с использованием других источников информации и вычисляются исходя из предполагаемых распределений вероятности. Они также характеризуются стандартными отклонениями.
Случайные погрешности выявляются в ходе выполнения повторных измерений в одних и тех же условиях измерений. Это приводит к рассеянию результатов вокруг среднего значения. Они не могут быть исключены, но порождаемая ими неопределенность измерений может быть уменьшена путем увеличения числа измерений и статистической обработки получаемых результатов.
Систематические погрешности порождаются систематическими воздействиями. Они остаются практически неизменными при повторных измерениях, выполняемых в тех же условиях. Их нельзя исключить, но можно скорректировать до определенного уровня (т.е. до уровня неисключенной систематической погрешности, получившей общее признание в отечественной метрологии).
Суммарная неопределенность является комбинацией стандартных неопределенностей. Все составляющие неопределенности требуют тщательного изучения и учета, после чего возможна оценка суммарной неопределенности. При предварительной оценке выявляются составляющие, меньшие одной пятой наибольшей компоненты, и ими пренебрегают при оценке суммарной неопределенности. Неопределенности, порождаемые случайными процессами, относятся к неопределенностям типа А, а порождаемые систематически действующими источниками - к неопределенностям типа В.
3.2 Источники неопределенности
Существует много источников неопределенности, которые зависят от технических средств. Однако можно отметить много общих измерительных задач, решение которых связано с оптическими методиками контроля и калибровки:
- недостаточно полное определение типа контроля; предъявляемые требования сформулированы недостаточно точно и детально;
- несовершенство реализации методики контроля; даже при четко определенных условиях проведения контроля не представляется возможным из-за несовершенства системы соблюсти в точности все теоретически определенные соотношения;
- неточности отсчета персоналом показаний аналоговых приборов;
- недостаток разрешающей способности и наличие пороговых соотношений, погрешностей;
- величины, характеризующие эталоны и референтные фантомы;
- изменения характеристик или конструкции средств измерений или референтных фантомов со времени последней калибровки;
- аппроксимация результатов измерений и модернизация метода и методики выполнения измерений;
- случайные помехи в процессе выполнения измерений.
Во-первых, влияния источников неопределенностей могут быть коррелированы; во-вторых, источники систематических погрешностей в ряде случаев могут оказаться незамеченными. Поэтому целесообразно периодически проводить как межлабораторные сличения соответствующих средств измерений, так и перекрестные сличения результатов измерений.
Примечание - Обязательному учету подлежат идентифицированные источники погрешностей при выполнении интерферометрического эксперимента при испытаниях оптических элементов и приборов.
3.3 Суммирование неопределенностей
4 Деление погрешностей на составляющие с вращательной симметрией и невращательной симметрией (вращательно-симметричные и невращательно-симметричные)
4.1 Общие сведения
Деление погрешностей на эти две группы составляющих является надежным практическим способом получения простейшими средствами полезной информации. Этим способом следует пользоваться с осторожностью, поскольку он не позволяет определить вращательно-симметричные погрешности испытуемого объекта. Однако практически очень часто они не влияют на результаты измерений, равно как и невращательно-симметричные.
В 4.2-4.4 описана процедура деления погрешностей измеренного волнового фронта оптических элементов на упомянутые составляющие с целью определения абсолютных значений невращательно-симметричных погрешностей при измерениях характеристик поверхностей испытуемых образцов.
Описываемая процедура применима ко всем оптическим поверхностям с вращательно-симметричной формой, включая плоскости, сферы и асферические поверхности, а также к оптическим элементам и системам, работающим на пропускание. Процедура неприменима к оптическим поверхностям, форма которых не обладает вращательной симметрией, например к внеосевым асферическим поверхностям. Более того, процедура не позволяет определить абсолютные значения вращательно-симметричных погрешностей испытуемого объекта.
4.2 Принцип
Используемые при измерениях формы волновых фронтов двухлучевые интерферометры всегда определяют разность между погрешностями измерения волнового фронта контролируемого объекта и погрешностями волнового фронта самого интерферометра, которые не могут быть отделены друг от друга путем однократного измерения. Например, погрешности интерферометра включают погрешности эталонной поверхности, погрешности пропускающей сферической поверхности или компенсирующих оптических элементов. Для определения погрешностей контролируемого образца используются так называемые вторичные эталоны (reference standards) или методы "абсолютных испытаний" (absolute tests). Однако для практического применения существуют и другие хорошо известные процедуры. Одна из них, не требующая применения дополнительных оптических элементов, называется методом "трех положений" [1] и используется при испытаниях сфер. Однако для объектов других типов (например, плоскостей, выпуклых сфер, пропускающих оптических, в том числе асферических элементов) нет простых, недорогих, доступных процедур выполнения "абсолютного контроля".
|
|
а) Оптическая схема эксперимента | б) Интерферограмма |
Рисунок 1 - Оптическая схема интерференционного эксперимента по контролю выпуклой отражающей поверхности
Таким образом,
Если данные однократных измерений повторяются перед усреднением, то
и
4.3 Измерительная аппаратура
Для выполнения описываемых далее измерений и контроля необходимы:
4.3.1 Цифровой интерферометр.
4.3.2 Аттестованная измерительная установка для проведения контроля.
4.3.3 Механизм вращения контролируемого образца.
4.3.4 Программное обеспечение, позволяющее усреднять и дифференцировать результаты измерений формы волнового фронта.
4.4 Методика выполнения измерений
а) измерение контролируемого образца в первом положении, зафиксированном при его вращении; регистрация результатов измерений волнового фронта с вычитанием сферической аберрации и наклона;
д) вычитание полученных данных из результата измерений, полученного в пункте а), и регистрация окончательного результата измерений.
5 Измерение качества физически реализованной эталонной поверхности
5.1 Плоскости
5.1.1 Общие сведения
В данном случае необходимы:
а) плоский элемент типа эталонного плоского зеркала;
б) контролируемый плоский элемент или оптическая система с плоским волновым фронтом на выходе, являющиеся объектами измерений.
Излучение источника распространяется в виде плоской волны, падающей по "нормали" на эталон и контролируемый образец. Из-за дефектов обеих поверхностей отраженный волновой фронт имеет искажения. В результате формируется интерферограмма, отражающая искажения этих волновых фронтов.
Взаимная юстировка эталона и контролируемого образца позволяет пользователю изменять интерференционную картину:
- путем перемещения вдоль оптической оси опорного зеркала можно зарегистрировать набор интерференционных картин с различным сдвигом полос, по которым можно выделить небольшие и локальные дефекты.
5.1.2 Измерение, базирующееся на эталоне плоской поверхности
5.1.2.1 Эталонная плоскость
Для многих приложений эталон плоской поверхности может считаться идеальным, если его качество, по крайней мере, в 10 раз более высокое, чем у контролируемого образца. Поэтому можно считать идеальной интерферограмму, созданную волновым фронтом, полученным в результате отражения излучения таким эталоном, а интерферограмму, полученную в результате отражения излучения контролируемым образцом, - искаженную его дефектами. Видимые невооруженным глазом искажения интерферограммы отражают аберрации волнового фронта, определяющие качество поверхности контролируемого образца.
Для определения размеров и координат дефектов на образце и эталоне пользователь может сравнить результаты первого измерения с результатами одного или нескольких последующих измерений, полученных при:
- перемещении эталона относительно образца в плоскости его поверхности;
- вращении эталона относительно образца вокруг оптической оси.
При этом пользователь может (см. рисунки 2 и 3):
- выполнять более одного перемещения в более чем одном направлении;
- выполнять более одного вращения;
- комбинировать перемещение(я) с вращением(ями).
а) Начальные положения
M - эталон в начальном положении; S - образец в начальном положении; M + S - начальная интерференционная картина; 1 - неоднородность образца на начальной интерференционной картине
б) Положения после перемещения эталона
M’ - эталон после перемещения; S - образец; M’S - вторая интерференционная картина; 2 - неоднородность образца на второй интерференционной картине
Рисунок 2 - Интерференционные картины и влияние перемещения
а) Начальные положения
M - эталон в начальном положении; Mi - индекс эталона; S - начальное положение образца; Si - индекс образца; M + S, Mi + Si - начальная интерференционная картина; 1 - неоднородность образца на начальной интерференционной картине
б) Положения после поворота образца
A - эталон; B - образец после поворота; C - вторая интерференционная картина*; 2 - неоднородность образца на второй интерференционной картине
Рисунок 3 - Интерференционные картины и влияние вращения
Путем сравнения различных интерференционных картин, соответствующих разному взаимному расположению эталона и образца, пользователь может определить местонахождение и размеры дефектов (при этом необходимо помнить, что интерферограмма отображает алгебраическую сумму аберраций).
5.1.2.2 Определение качества эталона плоской поверхности
Очевидно, что оптический элемент, используемый в качестве эталона плоской поверхности, должен быть аттестован. Проверка его качества производится в соответствии с рекомендациями, содержащимися в данном подразделе.
Пример - В 6.2 описан метод "трех плоскостей", когда плоская поверхность N1 сравнивается с плоской поверхностью N2, затем с N3, а N3, в свою очередь, с N2, в результате чего пользователь получает отклонения всех трех плоских поверхностей от идеальной формы.
Эталон и образец можно рассматривать отдельно путем введения непрозрачного экрана в плечи интерферометра. Перемещать можно как эталон, так и образец. Направление и величина перемещения выбираются пользователем, который может при желании исключить одну или более трансляций. Интерференционные картины формируются путем алгебраического суммирования дефектов эталона и образца, причем предоставляют информацию об обеих поверхностях.
Эталон и образец можно рассматривать отдельно путем введения непрозрачного экрана в плечи интерферометра. Вращать можно как эталон, так и образец. Углы поворота выбираются пользователем, который может при желании исключить одно или более вращений. Интерференционные картины формируются путем алгебраического суммирования дефектов эталона и образца, причем предоставляют информацию об обеих поверхностях.
5.1.3 Калибровочный сертификат
Выпускаемые промышленностью интерферометры и вспомогательные (в отечественной трактовке разрядные) эталонные плоские поверхности должны снабжаться калибровочными сертификатами. Калибровочный сертификат на эталонную плоскую поверхность должен содержать информацию о ее неплоскостности, а также детальное отображение расположения и размеры дефектов.
5.2 Сферы
5.2.1 Общие сведения
Оптическое качество вогнутого или выпуклого волновых фронтов может быть определено по отношению к физически реализованной сферической поверхности, откалиброванной по задаваемым параметрам, т.е. с известным оптическим качеством. При этом следует иметь в виду когерентность излучения источника. Как сферический волновой фронт, так и сферическая эталонная поверхность имеют центры кривизны.
Для получения требуемой интерференционной картины оба центра кривизны следует расположить как можно ближе друг к другу. Пользователь может добиться этого юстировкой плеч интерферометра.
5.2.2 Настройка интерферометра по идеальному эталону
Каждая разъюстировка центров кривизны приводит к интерференционной картине, свидетельствующей о появлении разности хода между сферическими волновыми фронтами.
При юстировке интерферометра могут формироваться следующие интерференционные картины:
- оба центра кривизны расположены один за другим на оптической оси: интерферограмма представляет собой совокупность концентрических колец;
- оба центра кривизны лежат в одной плоскости, перпендикулярной оптической оси: результат - интерференционная картина Юнга, т.е. совокупность прямолинейных полос;
- один из центров кривизны расположен не на оптической оси и не в той же плоскости, что и второй центр: интерференционная картина в виде эллипсов или парабол.
При настройке интерферометра следует добиваться картины в виде концентрических полос, учитывая, что:
- расстояние между кольцами возрастает, когда оба центра кривизны приближаются друг к другу;
- полоса нулевого порядка имеет место при совмещении центров кривизны;
- оставшиеся после юстировки интерференционные полосы соответствует дефектам контролируемого образца.
5.2.3 Оценка качества эталона
Метод "трех сфер" позволяет определить качество сферического эталона так же, как метод "трех плоскостей" позволяет сделать то же самое применительно к плоскому эталону (см. также 6.3).
Оптическое производство позволяет изготовить сопряженные пары вогнутых и выпуклых сферических эталонов одинакового радиуса путем их совместной полировки. Процедура оценки их качества та же, что и для плоских эталонов.
5.2.4 Альтернативный метод
Этот метод применим к сферам с радиусом, превышающим несколько метров. В этом случае эталоном может служить плоское зеркало, тогда интерференционная картина после правильной юстировки будет представлять собой совокупность концентрических колец. Пользователь может контролировать правильность определения кривизны поверхности, следя за расстоянием между полосами (кольцами).
Интерференционная картина непосредственно связана с взаимным расположением плоского зеркала и сферы. Пользователь, следовательно, может представить себе, как различные положения плоского зеркала и сферы формируют интерференционную картину (см. рисунок 4).
а) Кольца Ньютона (параллельные оси)
б) Таблица, демонстрирующая взаиморасположение сферы и плоского зеркала
Рисунок 4 - Контроль сферы большого радиуса кривизны
5.3 Асферики
5.3.1 Типы асфериков
5.3.1.1 Общие сведения
Поскольку контроль асфериков (асферических поверхностей) не позволяет применять методы абсолютных измерений плоских и сферических поверхностей, то следует разделить их на отдельные группы.
Все методы интерферометрии основаны на сравнении двух волновых фронтов, т.е. на суперпозиции волнового фронта, сформированного асферической поверхностью, и эталонного асферического волнового фронта либо двух смещенных друг относительно друга копий асферического волнового фронта. Все зависит от сложности формирования эталонного волнового фронта.
В обычной интерферометрии имеют дело с плоским или сферическим волновыми фронтами по двум причинам: во-первых, они легко трансформируются один в другой с помощью дифракционно-ограниченной оптики; во-вторых, калибровка осуществляется методами абсолютных измерений на основе сочетания методов относительных измерений, т.е. когда контролируемый объект размещается в различных положениях. Плоский и сферический волновые фронты и простые оптические элементы типа плоских и сферических поверхностей играют ключевую роль, так как их можно похожим способом использовать при калибровке.
Следующим важнейшим моментом является необходимость применения методов интерферометрии с формированием интерферограмм в области низких пространственных частот, по крайней мере, по двум причинам. Первая из них связана с теоремой Найквиста-Котельникова, а вторая - с возникновением неизбежных больших погрешностей, если в интерферограмме имеют место значительные отклонения.
Если градиент отклонений увеличивается или возрастает разность фаз между волновыми фронтами (опорным и контролируемым), то все погрешности и неточности юстировки в интерферограмме приводят к большим погрешностям измерений.
Поэтому асферики целесообразно разделить на три группы соответственно возрастанию сложности и полноты эксперимента: стигматические; плавные и крутые асферики.
5.3.1.2 Стигматические асферики
Стигматическими именуются асферики, преобразующие сферический волновой фронт в другой волновой фронт с иным радиусом кривизны. Это же относится к преобразованию плоского волнового фронта в сферический.
Стигматические асферики (например, конические поверхности, параболоиды, эллипсоиды, гиперболоиды) обычно контролируются в интерферометрах типа Тваймана-Грина или им подобных, поскольку имеет место преобразование сферических волновых фронтов в сферические, плоских волновых фронтов в сферические и наоборот, сферических волновых фронтов в плоские. В подавляющем большинстве случаев представляется возможность объединения нескольких широкоапертурных оптических элементов, обеспечивающего сравнение порожденного асфериком волнового фронта с плоским или простым сферическим волновым фронтом [5].
В большинстве интерферометров предпочтительно использовать плоские волновые фронты, иначе светоделитель пучков может внести значительные погрешности в результаты измерений.
5.3.1.3 Плавные асферики
Плавными именуются асферические поверхности, слегка отличающиеся от плоских или сферических поверхностей с соответствующими радиусами кривизны. Следовательно, их контроль можно проводить на интерферометре Физо с осветителем, оптическая система которого формирует волновой фронт с заданной кривизной эталонной поверхности.
5.3.1.4 Крутые асферики
В данном случае для формирования эталонного асферического волнового фронта требуется достаточно сложная аппаратура и высокая квалификация экспериментатора. Необходимы такие компенсирующие оптические элементы и системы, как, например, "нулевая оптика", составленная из простых линз, или даже целые оптические системы для сопряжения идеального асферического волнового фронта. В большинстве случаев предполагается использование синтезированных голограмм или дифракционных оптических элементов, которые формируют как эталонную асферическую волну, так и сопряженную ей.
5.3.2 Методики контроля
5.3.2.1 Методики контроля стигматических асфериков
Как упоминалось ранее, контроль проводится на интерферометрах типа Тваймана-Грина, однако для гарантированного формирования плоской волны на входе и выходе интерферометра используются вспомогательные оптические элементы (системы). Для получения общего представления об этих методиках контроля приводятся два примера.
На рисунках 5 и 6 приведены оптические схемы контроля соответственно параболоидов и эллипсоидальных зеркал.
Для получения доступа к полной версии без ограничений вы можете выбрать подходящий тариф или активировать демо-доступ.