ГОСТ 25645.323-88 Материалы полимерные. Методы радиационных испытаний.
ГОСТ 25645.323-88
Группа Л29
ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР
МАТЕРИАЛЫ ПОЛИМЕРНЫЕ
Методы радиационных испытаний
Polymeric materials. Methods of radiation tests
ОКСТУ 2209
Срок действия с 01.01.90
до 01.01.95*
ИНФОРМАЦИОННЫЕ ДАННЫЕ
1. ИСПОЛНИТЕЛИ
Б.А.Брискман, канд. техн. наук; А.А.Волобуев; С.С.Дадьян; Н.А.Калинкина; О.Н.Карпухин, д-р хим. наук; С.А.Клюшин; Е.Н.Лесновский, канд. техн. наук; В.К.Матвеев, канд. хим. наук; В.К.Милинчук, д-р хим. наук; Е.В.Пашков, канд. техн. наук; А.Л.Померанцев, канд. физ.-мат. наук; В.П.Сичкарь, канд. хим. наук; В.Ф.Степанов, канд. физ.-мат. наук; Е.Н.Табалин
2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ ПОСТАНОВЛЕНИЕМ Государственного комитета СССР по стандартам от 30.11.88 N 3908
3. Срок первой проверки - 1993 г.
Периодичность проверки - 5 лет.
4. ВВЕДЕН ВПЕРВЫЕ
5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ
|
|
Обозначение НТД, на который дана ссылка | Номер пункта, подпункта перечисления, приложения |
Вводная часть | |
1.4, 1.6, 1.7, 2.3.4.2, 2.3.5.1, 2.3.5.8, 2.5.5.1, 2.5.6.3 | |
2.3.2.2, 2.5.6.2, 2.7.2.3 | |
1.2, 1.5 | |
3.2 | |
3.2 | |
3.2 | |
3.3 | |
3.3 | |
3.3 | |
ГОСТ 20.57.503-80 | 1.3 |
2.3.6.2, 2.7.6.1 | |
2.3.2.1, 2.3.2.3, 2.3.4.1, 2.3.6.1 | |
2.5.2.4, 2.5.4.2, 2.5.5.2, 2.5.6.1 | |
2.7.2.1 | |
2.7.3.1 | |
ГОСТ 21126-75 | Приложение 6 |
2.5.2.4, 2.5.4.2, 2.5.5.2, 2.5.6.1 |
Настоящий стандарт распространяется на органические полимерные материалы (ПМ) и устанавливает методы радиационных испытаний и прогнозирования радиационных эффектов в процессе и (или) после радиационного или комбинированного радиационного воздействия на них.
Методы радиационных испытаний ПМ применяют при оценке радиационной стойкости ПМ и изделий из них.
Стандарт не устанавливает методы радиационных испытаний ПМ при воздействии на них ионизирующих частиц со средним линейным пробегом менее 10 мкм.
Стандарт не устанавливает методы радиационных испытаний резин после радиационного или комбинированного радиационного воздействия, которые регламентированы ГОСТ 9.701.
Метод прогнозирования скорости радиационной ползучести и радиационной долговечности при растяжении не распространяется на ПМ в высокоэластичном состоянии.
1. ОБЩИЕ ПОЛОЖЕНИЯ
1.1. Радиационные испытания ПМ проводят с целью определения и прогнозирования радиационных эффектов в процессе и (или) после радиационного или комбинированного радиационного воздействия на ПМ, а также способности ПМ сохранять значения характерных показателей их радиационной стойкости в пределах, установленных в нормативно-технической документации на ПМ или техническом задании на проведение радиационных испытаний (ТЗ).
1.2. Характерные показатели радиационной стойкости ПМ, по которым проводят определение и прогнозирование радиационных эффектов в ПМ, устанавливают в стандартах и технических условиях на ПМ или ТЗ с учетом условий эксплуатации ПМ, их функционального назначения, требований ГОСТ 9.711 и настоящего стандарта.
1.3. Радиационные испытания ПМ с измерением характерного показателя их радиационной стойкости в процессе радиационного или комбинированного радиационного воздействия проводят для определения суммы обратимого и необратимого эффектов в ПМ с последующим прогнозированием обратимого радиационного эффекта.
Методы радиационных испытаний ПМ с измерением характерного показателя их радиационной стойкости в процессе радиационного или комбинированного радиационного воздействия должны соответствовать разд.2 настоящего стандарта и требованиям ГОСТ 20.57.503.
1.4. Радиационные испытания ПМ с измерением характерного показателя их радиационной стойкости после радиационного или комбинированного радиационного воздействия проводят для определения и прогнозирования необратимого и послерадиационного эффектов в ПМ.
Методы радиационных испытаний с измерением характерного показателя радиационной стойкости ПМ после радиационного или комбинированного радиационного воздействия - по ГОСТ 9.706.
1.5. Радиационную стойкость ПМ оценивают по результатам радиационных испытаний, сопоставляя зарегистрированное изменение характерного показателя радиационной стойкости ПМ с критерием радиационной стойкости для заданного значения меры радиационного воздействия с учетом требований ГОСТ 9.711 либо определяя детерминированный или параметрический показатель радиационной стойкости ПМ в зависимости от требований ТЗ.
1.6. Условия проведения радиационных испытаний ПМ устанавливают в соответствии с требованиями ТЗ, ГОСТ 9.706 и настоящего стандарта.
1.7. Требования к источникам ионизирующего излучения, установкам для размещения, образцов ПМ при облучении, конструкциям камер или ячеек, устройствам для термостатирования и закрепления образцов, средствам перемещения и хранения радиоактивных образцов - по ГОСТ 9.706.
2. МЕТОДЫ ИСПЫТАНИЙ И ПРОГНОЗИРОВАНИЯ С ОПРЕДЕЛЕНИЕМ ХАРАКТЕРНЫХ
ПОКАЗАТЕЛЕЙ РАДИАЦИОННОЙ СТОЙКОСТИ ПОЛИМЕРНЫХ МАТЕРИАЛОВ
В ПРОЦЕССЕ РАДИАЦИОННОГО ИЛИ КОМБИНИРОВАННОГО
РАДИАЦИОННОГО ВОЗДЕЙСТВИЯ
2.1. Радиационные испытания с определением радиационных эффектов в ПМ в процессе радиационного или комбинированного радиационного воздействия проводят по одному или нескольким следующим характерным показателям радиационной стойкости ПМ: удельная объемная электрическая проводимость, тангенс угла диэлектрических потерь, диэлектрическая проницаемость, скорость ползучести при растяжении, долговечность при растяжении.
2.2. При необходимости в соответствии с требованиями ТЗ из суммы радиационных эффектов, определяемых в процессе радиационного или комбинированного радиационного воздействия, выделяют необратимый и прогнозируют обратимый радиационные эффекты в соответствии с требованиями пп.2.3.6.3, 2.4, 2.5.6.3, 2.6, 2.7.5.6, 2.8.
2.3. Метод радиационных испытаний для определения удельной объемной электропроводимости полимерных материалов в процессе радиационного или комбинированного радиационного воздействия
2.3.1. Метод заключается в том, что твердые образцы ПМ подвергают воздействию непрерывного или импульсного ионизирующего излучения в вакууме или газовой среде при заданных в ТЗ мощности поглощенной дозы ионизирующего излучения и температуре или ряде их значений и определяют удельную объемную электропроводимость ПМ в процессе указанного воздействия.
2.3.2. Требования к образцам
2.3.2.1. Форма, размеры, способы изготовления и условия хранения образцов ПМ до испытаний должны соответствовать требованиям ГОСТ 6433.2.
Максимальную толщину образцов выбирают исходя из среднего линейного пробега частиц непосредственно ионизирующего излучения и заданного значения неравномерности радиационного воздействия на образец.
2.3.2.2. Количество образцов ПМ для радиационных испытаний выбирают исходя из заданной точности результатов испытаний и прогнозирования в соответствии с требованиями приложения 3 ГОСТ 9.707, но не менее трех для каждого значения мощности поглощенной дозы и (или) температуры облучения.
2.3.2.3. Электроды наносят на образцы распылением металла в вакууме в соответствии с требованиями ГОСТ 6433.2.
Использование других способов нанесения электродов на образцы ПМ по ГОСТ 6433.2 допускается только после предварительной проверки идентичности результатов радиационных испытаний.
2.3.3. Средства испытаний
Камера или измерительная ячейка, конструкция которой должна обеспечивать снижение тока утечки по ионизованной газовой среде камеры между электродами образца не менее чем в десять раз по сравнению с током, протекающим через образец (далее в тексте - рабочий ток), при проведении радиационных испытаний в газовой среде.
В случае воздействия на образец импульсного ионизирующего излучения конструкция камеры или измерительной ячейки должна обеспечить измерение электрического сигнала, индуцированного излучением в образце, без искажений.
Источники внешнего постоянного регулируемого электрического напряжения с выходным напряжением от 1 до 3000 В, поддерживаемым с предельным отклонением от заданного значения ±5%, и внутренним сопротивлением, обеспечивающим заданную точность измерений.
Пример. Измерительный прибор - универсальный двухлучевой запоминающий осциллограф с подключенным на вход широкополосным усилителем.
Устройство, компенсирующее паразитные радиационные токи (далее в тексте - компенсирующее устройство), состоящее из источника постоянного регулируемого электрического напряжения и добавочного сопротивления, которое больше или равно входному сопротивлению измерительного прибора, - для испытаний в режиме воздействия на образец непрерывного ионизирующего излучения.
Компенсирующее устройство, состоящее из цилиндра Фарадея, сигнал с которого ослабляется с помощью добавочных емкости и сопротивления, обеспечивающих также измерение амплитуды электрического сигнала без искажения формы импульса, - для испытаний в режиме воздействия на образец ПМ импульсного непосредственно ионизирующего излучения.
Радиочастотный кабель типа РК с радиационностойкой изоляцией, вводимый через вакуумное уплотнение в камеру или измерительную ячейку и проложенный через биологическую защиту источника ионизирующего излучения к входу измерительного прибора.
2.3.4. Подготовка к испытаниям
2.3.4.2. Проводят подготовку аппаратуры для облучения образцов и дозиметрию в соответствии с ГОСТ 9.706.
2.3.4.3. При отключенном источнике ионизирующего излучения собирают измерительную схему, как показано на черт.1 или черт.2. При радиационных испытаниях в газовой среде определяют токи утечки по ионизованной газовой среде, непосредственно измеряя ток между электродами в отсутствие образца ПМ. Если токи утечки не удовлетворяют требованиям п.2.3.3, изменяют конструкцию камеры или измерительной ячейки.
Структурная схема измерений при непрерывном воздействии
1 - источник внешнего постоянного электрического напряжения; 2 - измерительная ячейка;
3 - компенсирующее устройство; 4 - измерительный прибор; 5 - источник ионизирующего излучения
Черт.1
Структурная схема измерений при импульсном воздействии
1 - источник внешнего постоянного электрического напряжения; 2 - измерительная ячейка; 3 - цилиндр Фарадея;
4 - компенсирующее устройство; 5 - измерительный прибор; 6 - источник ионизирующего излучения
Черт.2
2.3.5. Проведение испытаний
2.3.5.1. Образец помещают в камеру или измерительную ячейку и устанавливают заданные в ТЗ температуру и среду в соответствии с требованиями ГОСТ 9.706.
2.3.5.2. Включают или вводят источник ионизирующего излучения.
При испытаниях в режиме воздействия непрерывного ионизирующего излучения в образце компенсируют паразитный радиационный ток до минимального в конкретных условиях испытаний, регулируя электрическое напряжение компенсирующего устройства. При испытаниях в режиме воздействия импульсного ионизирующего излучения эту же операцию проводят за один или несколько импульсов. В тех случаях, когда период подачи импульсов ионизирующего излучения более 2 ч, компенсирующий сигнал на измерительный прибор подают не с цилиндра Фарадея, а с измерительного электрода второго образца, приготовленного и испытываемого в тех же условиях, при отсутствии внешнего электрического напряжения на высоковольтном электроде.
2.3.5.3. Включают источник внешнего электрического напряжения.
Рабочий ток должен, как минимум, в пять раз превышать паразитный радиационный ток.
2.3.5.4. Если рабочий ток при минимальной из выбранных мощностей поглощенной дозы не удается измерить с необходимой точностью, при испытаниях используют образец с меньшей толщиной или увеличивают подаваемое электрическое напряжение. При других мощностях поглощенной дозы напряжение и толщину образца не меняют.
При работе с источником непосредственно ионизирующего излучения рабочий ток для ряда заданных в ТЗ мощностей поглощенной дозы измеряют на одном и том же образце, не извлекая его из камеры или измерительной ячейки. При этом допускается не отключать источник ионизирующего излучения, а менять мощность поглощенной дозы, регулируя режим работы источника.
2.3.5.5. При воздействии непрерывного ионизирующего излучения регистрируют установившийся за время не более 10 мин после начала радиационного воздействия рабочий ток.
При воздействии импульсного ионизирующего излучения регистрируют максимальное значение и форму импульса рабочего тока. Для регистрации формы импульса источник ионизирующего излучения переводят в режим одиночного импульса.
2.3.5.9. Повторяют испытания для каждого образца в соответствии с пп.2.3.5.1-2.3.5.8.
2.3.5.10. Проводят испытания образцов при других заданных в ТЗ мощностях поглощенной дозы, температурах и составах среды в соответствии с пп.2.3.5.1-2.3.5.8.
2.3.6. Обработка результатов испытаний
2.3.6.2. Статистическая обработка результатов испытаний - по ГОСТ 269.
2.4. Метод прогнозирования радиационной удельной объемной электропроводимости полимерных материалов
ие.
ии 2.
ении 5.
2.5. Метод радиационных испытаний для определения тангенса угла диэлектрических потерь и диэлектрической проницаемости полимерных материалов в процессе радиационного или комбинированного радиационного воздействия
2.5.2. Требования к образцам
2.5.2.1. Для испытаний в низкочастотном диапазоне образцы изготовляют в виде диска диаметром 50 мм и толщиной от 0,02 до 2,00 мм.
Для испытаний в диапазоне СВЧ образцы изготовляют в форме пластины длиной 30 мм, шириной от 9,98 до 10,00 мм и толщиной от 0,2 до 1,0 мм.
Максимальную толщину образцов выбирают с учетом требований п.2.3.2.1.
2.5.2.2. Поверхность образца должна быть ровной, гладкой, без трещин, складок, вмятин, царапин, загрязнений, посторонних включений и других дефектов.
2.5.2.3. Способ изготовления и условия хранения образцов должны соответствовать нормативно-технической документации на ПМ.
2.5.2.4. Электроды из серебра, золота, меди и алюминия наносят на образцы в соответствии с требованиями ГОСТ 6433.4 только распылением металла в вакууме. При измерении в диапазоне СВЧ электроды не наносят. Размеры электродов - по ГОСТ 6433.4 и ГОСТ 22372.
При измерениях с неуравновешенным мостом в процессе радиационного воздействия облучаемая рабочая поверхность образца не должна выходить за пределы поверхности напыленного на образец электрода.
2.5.2.5. Количество образцов для испытаний выбирают согласно п.2.3.2.2.
2.5.3. Средства испытаний
Камера или измерительная ячейка, на которой при испытаниях в низкочастотном диапазоне в вакууме дополнительно монтируют герметичные вводы для присоединения радиочастотных кабелей, а при испытаниях в газовой среде предусматривают межэлектродную кольцевую изоляцию для исключения шунтирования образца ПМ по ионизованной среде.
Генераторы переменного тока, работающие в низкочастотном диапазоне при напряжении до 50 В.
Коммуникационные линии, проложенные через биологическую защиту источника ионизирующего излучения:
медная или латунная волноводная линия сечением 10х23 мм длиной не более 25 м, в состав которой входят ферритовая развязка и аттенюатор, и соединительная линия, в состав которой входят радиочастотный кабель, детектор и вентиль - для испытаний в диапазоне
СВЧ.
2.5.4. Подготовка к испытаниям
2.5.4.1. Проводят подготовку аппаратуры для облучения образцов ПМ и дозиметрию согласно п.2.3.4.2.
2.5.4.2. Для испытаний в низкочастотном диапазоне собирают измерительную схему: камера или измерительная ячейка с образцом ПМ - коммуникационные линии - измерительные приборы. Схема измерений в этом диапазоне при работе с неуравновешенным мостом указана на черт.3, при работе с уравновешенным мостом - в ГОСТ 6433.4 и ГОСТ 22372.
Схема измерений в низкочастотном диапазоне
1 - камера или измерительная ячейка; 2 - генератор; 3 - эталонный конденсатор;
4 - неуравновешенный мост; 5 - селективный вольтметр; 6 - источник излучения
Черт.3
Для испытаний в диапазоне СВЧ собирают измерительную схему, указанную на черт.4.
Схема измерений в диапазоне СВЧ
1 - источник ионизирующего излучения; 2 - прямоугольный резонатор; 3 - образец; 4 - фланец с диафрагмой;
5 - отрезок волновода для ввода тепло- и хладагента или создания вакуума; 6 - диэлектрическая прокладка;
7 - ферритовая развязка; 8 - волноводная линия; 9 - биологическая защита; 10 - аттенюатор;
11 - измерительный прибор; 12 - соединительный кабель; 13 - детектор; 14 - вентиль
Черт.4
2.5.4.3. Измеряют электрическую емкость соединительного кабеля.
2.5.5. Проведение испытаний
2.5.5.1. В камере или измерительной ячейке устанавливают заданные в ТЗ газовую среду или вакуум и температуру образца в соответствии с требованиями ГОСТ 9.706.
При работе с неуравновешенным мостом включают измерительную аппаратуру и регистрируют электрическое напряжение на образце селективным вольтметром, напряжение питания моста - вольтметром генератора и емкость образца - по эталонному конденсатору мостового прибора.
При измерениях в СВЧ диапазоне включают измерительную аппаратуру и регистрируют резонансную частоту и полосу пропускания пустого резонатора, после чего помещают образец в резонатор, вновь устанавливают заданную среду или вакуум и температуру образца и повторяют измерения, регистрируя резонансную частоту и полосу пропускания резонатора с образцом.
2.5.5.4. Отключают источник излучения и извлекают образец.
2.5.5.5. Повторяют испытания для каждого образца для тех же значений мощности поглощенной дозы, температуры облучения и той же среды в соответствии с пп.2.5.5.1-2.5.5.4.
2.5.5.6. Повторяют испытания при других заданных в ТЗ значениях температуры облучения и составе среды в соответствии с пп.2.5.5.1-2.5.5.5.
2.5.5.7. Извлекают образец из камеры или измерительной ячейки. Радиационные испытания считают законченными.
2.5.6. Обработка результатов испытаний
для уравновешенного моста - по ГОСТ 6433.4 и ГОСТ 22372;
для неуравновешенного моста - по формулам:
для резонаторного метода - по формулам:
нно.
2.6. Метод прогнозирования тангенса угла диэлектрических потерь и диэлектрической проницаемости полимерных материалов в процессе радиационного или комбинированного радиационного воздействия
для каждой мощности поглощенной дозы ионизирующего излучения поглощенная ПМ доза должна быть одинакова;
/с.
2.7. Метод радиационных испытаний для определения радиационной ползучести и радиационной долговечности полимерных материалов при растяжении
2.7.1. Метод заключается в том, что образцы ПМ подвергают одновременному непрерывному воздействию растягивающей нагрузки и ионизирующего излучения в воздухе или инертной газовой среде при заданных в ТЗ постоянном растягивающем напряжении, мощности поглощенной дозы, температуре или ряде их значений и определяют скорость радиационной ползучести и радиационную долговечность ПМ при растяжении.
2.7.2. Требования к образцам
2.7.2.1. Форма и размеры образцов ПМ толщиной не менее 1,0 мм - по ГОСТ 11262 при условии полного перекрытия образца пучком ионизирующего излучения.
Форма образцов ПМ толщиной менее 1,0 мм должна соответствовать типу 2 по ГОСТ 11262 и следующим условиям:
Максимальную толщину образцов ПМ выбирают в соответствии с п.2.3.2.1
2.7.2.2. Способ изготовления и условия хранения образцов ПМ должны соответствовать нормативно-технической документации на ПМ.
Образцы волокнистых ПМ изготовляют вклеиванием волокон или нитей в бумажную рамку.
2.7.3. Требования к средствам испытаний
2.7.3.1. Средства испытаний должны соответствовать требованиям пп.2.1, 2.1.1, 2.1.2 и 2.2 ГОСТ 18197, а также пп.1.7, 2.7.3.2, 2.7.3.3 настоящего стандарта.
2.7.3.2. Дистанционные датчики температуры, удлинения и растягивающей нагрузки, размещенные в зоне облучения образца, должны быть соединены со вторичной измерительной аппаратурой посредством коммуникационной линии из многожильного кабеля любого типа с экранирующей оплеткой и гибкой радиационно-стойкой изоляцией, проложенной через биологическую защиту источника.
2.7.3.3. Устройство для термостатирования образца методом обдува его охлажденным или нагретым воздухом должно обеспечивать проведение испытаний при заданной в ТЗ температуре с погрешностью не более ±5 К и градиентом температур по всей длине рабочей части образца не более 3 К, если в нормативно-технической документации на конкретный ПМ нет других указаний.
Воздух может быть заменен техническим азотом или техническим аргоном.
2.7.4. Подготовка к испытаниям
2.7.4.1. Проводят подготовку аппаратуры для облучения образцов и дозиметрию согласно п.2.3.4.2.
2.7.4.2. Подключают датчики удлинения, температуры и растягивающей нагрузки, а также вторичную измерительную аппаратуру к коммуникационной согласующей линии.
2.7.4.3. Образец закрепляют в захваты так, чтобы продольная ось образца совпадала с линией, соединяющей точки крепления захватов на испытательной машине.
2.7.4.4. Включают устройство для термостатирования образца и устанавливают заданную в ТЗ температуру.
2.7.5. Проведение испытаний
2.7.5.7. Для определения радиационной долговечности ПМ продолжают облучение нагруженного образца, регистрируя время до разрыва образца, соответствующего обрыву линии ползучести на диаграмме потенциометра.
2.7.5.8. Проводят испытания образцов ПМ при других заданных значениях мощности поглощенной дозы, растягивающего напряжения и температуры в соответствии с требованиями пп.2.7.5.1-2.7.5.6.
2.7.6. Обработка результатов испытаний
2.7.6.1. Статистическая обработка результатов испытаний - по ГОСТ 269.
Результаты испытаний, полученные в среде технического азота или аргона, допускается переносить на вакуум.
2.8. Метод прогнозирования скорости радиационной ползучести и радиационной долговечности полимерных материалов
Экстраполяция допускается:
Экстраполяцию проводят по формулам:
нии 6.
е.
2.8.3. Результаты прогнозирования, полученные в среде технического азота или аргона, допускается переносить на вакуум.
Результаты прогнозирования заносят в протокол (см. приложение 1).
3. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ
3.1. При работе с источниками ионизирующего излучения, а также с радиоактивными образцами необходимо соблюдать требования, установленные в технических условиях на источник ионизирующего излучения, "Нормах радиационной безопасности" НРБ-76*, "Основных санитарных правилах работы с радиоактивными и другими источниками ионизирующего излучения" ОСП 72/80.
3.2. Помещение, в котором проводят испытания, должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004*, санитарно-гигиеническим - по ГОСТ 12.1.005**, к работе с вредными веществами - по ГОСТ 12.1.007.
3.3. При работе с электрооборудованием необходимо соблюдать требования, установленные в ГОСТ 12.2.007.0, ГОСТ 12.2.007.3, ГОСТ 12.2.007.6.
3.4. При работе с сосудами под давлением необходимо соблюдать "Правила устройства и безопасной эксплуатации котлов и сосудов, работающих под давлением", утвержденных Госгортехнадзором СССР.
ПРИЛОЖЕНИЕ 1
Рекомендуемое
ФОРМА ПРОТОКОЛА РАДИАЦИОННЫХ ИСПЫТАНИЙ И ПРОГНОЗИРОВАНИЯ
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Наиме- нова- ние и марка мате- риала (ГОСТ, ТУ) | Условия облучения | Значения характерных показателей | Значе- ния констант для прогнози- рования | Прогнози- руемые условия облучения | Прогнози- руемое значение харак- терного показателя | |||||||||
| Вид излу- чения | Энергия излу- чения, МэВ | Длитель- ность импульса, с | Мощность погло- щенной дозы, Гр/с | Погло- щенная доза, Гр | Сре- да | Темпе- ратура, К | Дав- ление, Па |
|
|
| Мощ- ность погло- щенной дозы, Гр/с | Погло- щенная доза, Гр |
|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
ПРИЛОЖЕНИЕ 2
Обязательное
АЛГОРИТМ РАСЧЕТА ХАРАКТЕРИСТИЧЕСКИХ ПАРАМЕТРОВ
РАДИАЦИОННОЙ УДЕЛЬНОЙ ОБЪЕМНОЙ ЭЛЕКТРОПРОВОДИМОСТИ
1. Ввод экспериментальных данных и параметров:
Запоминание исходных значений
3. Предварительная обработка данных.
4. Проверка адекватности модели по первому критерию.
Вычисляют
где
9. Проверка на допустимость исключения столбцов.
ыми данными.
11. Остановка программы с диагнозом "Модель не адекватна".
ПРИЛОЖЕНИЕ 3
Рекомендуемое
ОПИСАНИЕ ПРОГРАММЫ ДЛЯ РАСЧЕТА ХАРАКТЕРИСТИЧЕСКИХ ПАРАМЕТРОВ
УДЕЛЬНОЙ РАДИАЦИОННОЙ ЭЛЕКТРОПРОВОДИМОСТИ
1. Общие положения
Программа "QRET" предназначена для прогнозирования радиационной электропроводимости методом регрессионного и дисперсионного анализов.
Программа написана на языке FORTRAN-4 с использованием ЭВМ ЕС-1045 без ограничений на применение.
Исходные данные вводят через дисплей или на перфокартах.
Программа использует 8 подпрограмм:
и свободы;
2. Обозначения для связи программы с алгоритмом
Для составления программы вводят следующие переобозначения:
Остальные обозначения либо совпадают, либо им
еют промежуточный характер.
3. Ввод данных
I ввод - четыре числа:
|
|
- число образцов; - число измерений; - размерность массива ; - размерность массива ; |
Формат (4I5)
Можно задавать от 0,99 до 0,80, максимальная размерность - пять, формат (6F8.3).
Можно задавать от 0,99 до 0,80, максимальная размерность - пять, формат (6F8.3).
4. Вывод результатов
ПРИЛОЖЕНИЕ 4
Рекомендуемое
ТЕКСТ ПРОГРАММЫ РАСЧЕТА ХАРАКТЕРИСТИЧЕСКИХ ПАРАМЕТРОВ
РАДИАЦИОННОЙ УДЕЛЬНОЙ ОБЪЕМНОЙ
ЭЛЕКТРОПРОВОДИМОСТИ
ПРИЛОЖЕНИЕ 5
Рекомендуемое
ПРИМЕР ОБРАБОТКИ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ
ПО ПРОГРАММЕ НА ЭВМ ЕС-1045
ПРИЛОЖЕНИЕ 6
Рекомендуемое
МЕТОД ПРИБЛИЖЕННОЙ ОЦЕНКИ ХАРАКТЕРИСТИЧЕСКИХ ПАРАМЕТРОВ
РАДИАЦИОННОЙ УДЕЛЬНОЙ ОБЪЕМНОЙ ЭЛЕКТРОПРОВОДИМОСТИ
Введем новые обозначения
Положим
Решение системы
При оценке погрешности прогнозирования можно использовать приложение 2 к ГОСТ 21126.