Свод правил СП 52-101-2003 Бетонные и железобетонные конструкции без предварительного напряжения арматуры.
СП 52-101-2003
СВОД ПРАВИЛ ПО ПРОЕКТИРОВАНИЮ И СТРОИТЕЛЬСТВУ
БЕТОННЫЕ И ЖЕЛЕЗОБЕТОННЫЕ КОНСТРУКЦИИ БЕЗ ПРЕДВАРИТЕЛЬНОГО НАПРЯЖЕНИЯ АРМАТУРЫ
Concrete and reinforced concrete structures without prestressing
Дата введения 2004-03-01
ПРЕДИСЛОВИЕ
1 РАЗРАБОТАН Научно-исследовательским, проектно-конструкторским и технологическим институтом бетона и железобетона (ГУП "НИИЖБ") Госстроя России
ВНЕСЕН Управлением технического нормирования, стандартизации и сертификации в строительстве и ЖКХ Госстроя России
3 ВВЕДЕН ВПЕРВЫЕ
ВВЕДЕНИЕ
Настоящий Свод правил содержит рекомендации по расчету и проектированию бетонных и железобетонных конструкций промышленных и гражданских зданий и сооружений из тяжелого бетона без предварительного напряжения арматуры, которые обеспечивают выполнение обязательных требований СНиП 52-01-03 "Бетонные и железобетонные конструкции. Основные положения".
Решение вопроса о применении Свода правил при проектировании бетонных и железобетонных конструкций конкретных зданий и сооружений относится к компетенции заказчика или проектной организации. В случае если принято решение о применении настоящего Свода правил, должны быть выполнены все установленные в нем требования.
Приведенные в Своде правил единицы физических величин выражены: силы - в ньютонах (Н) или в килоньютонах (кН); линейные размеры - в мм (для сечений) или в м (для элементов или их участков); напряжения, сопротивления, модули упругости - в мегапаскалях (МПа); распределенные нагрузки и усилия - в кН/м или Н/мм.
Свод правил разработали д-ра техн. наук А.С.Залесов, А.И.Звездов, Т.А.Мухамедиев, Е.А.Чистяков (ГУП "НИИЖБ" Госстроя России).
1 ОБЛАСТЬ ПРИМЕНЕНИЯ
Настоящий Свод правил распространяется на проектирование бетонных и железобетонных конструкций зданий и сооружений различного назначения, выполненных из тяжелого бетона классов по прочности на сжатие от В10 до В60 без предварительного напряжения арматуры и эксплуатируемых в климатических условиях России, в среде с неагрессивной степенью воздействия, при статическом действии нагрузки.
Свод правил не распространяется на проектирование бетонных и железобетонных конструкций гидротехнических сооружений, мостов, покрытий автомобильных дорог и аэродромов и других специальных сооружений.
2 НОРМАТИВНЫЕ ССЫЛКИ
В настоящем Своде правил использованы ссылки на следующие нормативные документы:
СНиП 52-01-2003 Бетонные и железобетонные конструкции. Основные положения
СНиП 2.01.07-85* Нагрузки и воздействия
СНиП 23-01-99* Строительная климатология
ГОСТ 13015.0-2003* Конструкции и изделия бетонные и железобетонные сборные. Общие технические требования
ГОСТ 14098-91 Соединения сварные арматуры и закладных изделий железобетонных конструкций. Типы, конструкции и размеры
3 ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ
В настоящем Своде правил использованы термины по СНиП 52-01 и другим нормативным документам, на которые имеются ссылки в тексте.
4 ОБЩИЕ УКАЗАНИЯ
4.1 ОСНОВНЫЕ ПОЛОЖЕНИЯ
4.1.1 Бетонные и железобетонные конструкции должны быть обеспечены с требуемой надежностью от возникновения всех видов предельных состояний расчетом, выбором показателей качества материалов, назначением размеров и конструированием согласно указаниям настоящего Свода правил. При этом должны быть выполнены технологические требования при изготовлении конструкций и соблюдены требования по эксплуатации зданий и сооружений, а также требования по экологии, устанавливаемые соответствующими нормативными документами.
4.1.2 Конструкции рассматривают как бетонные, если их прочность обеспечена одним только бетоном.
Бетонные элементы применяют:
а) преимущественно на сжатие при расположении продольной сжимающей силы в пределах поперечного сечения элемента;
б) в отдельных случаях в конструкциях, работающих на сжатие, при расположении продольной сжимающей силы за пределами поперечного сечения элемента, а также в изгибаемых конструкциях, когда их разрушение не представляет непосредственной опасности для жизни людей и сохранности оборудования и когда применение бетонных конструкций целесообразно.
4.2 ОСНОВНЫЕ РАСЧЕТНЫЕ ТРЕБОВАНИЯ
4.2.1 Расчеты бетонных и железобетонных конструкций следует производить по предельным состояниям, включающим:
- предельные состояния первой группы (по полной непригодности к эксплуатации вследствие потери несущей способности);
- предельные состояния второй группы (по непригодности к нормальной эксплуатации вследствие образования или чрезмерного раскрытия трещин, появления недопустимых деформаций и др.).
Расчеты по предельным состояниям первой группы, содержащиеся в настоящем СП, включают расчет по прочности с учетом в необходимых случаях деформированного состояния конструкции перед разрушением.
Расчеты по предельным состояниям второй группы, содержащиеся в настоящем СП, включают расчеты по раскрытию трещин и по деформациям.
4.2.2 Расчет по предельным состояниям конструкции в целом, а также отдельных ее элементов следует, как правило, производить для всех стадий: изготовления, транспортирования, возведения и эксплуатации; при этом расчетные схемы должны отвечать принятым конструктивным решениям.
4.2.3 Расчеты железобетонных конструкций необходимо, как правило, производить с учетом возможного образования трещин и неупругих деформаций в бетоне и арматуре.
Определение усилий и деформаций от различных воздействий в конструкциях и в образуемых ими системах зданий и сооружений следует производить по методам строительной механики, как правило, с учетом физической и геометрической нелинейности работы конструкций.
4.2.4 При проектировании бетонных и железобетонных конструкций надежность конструкций устанавливают расчетом путем использования расчетных значений нагрузок и воздействий, расчетных значений характеристик материалов, определяемых с помощью соответствующих частных коэффициентов надежности по нормативным значениям этих характеристик с учетом степени ответственности зданий и сооружений.
Нормативные значения нагрузок и воздействий, коэффициентов сочетаний, коэффициентов надежности по нагрузке, коэффициентов надежности по назначению конструкций, а также подразделение нагрузок на постоянные и временные (длительные и кратковременные) принимают согласно СНиП 2.01.07.
4.2.5 При расчете элементов сборных конструкций на воздействие усилий, возникающих при их подъеме, транспортировании и монтаже, нагрузку от веса элементов следует принимать с коэффициентом динамичности, равным: 1,60 - при транспортировании, 1,40 - при подъеме и монтаже. Допускается принимать более низкие, обоснованные в установленном порядке, значения коэффициента динамичности, но не ниже 1,25.
1/600 длины элемента или расстояния между его сечениями, закрепленными от смещения;
1/30 высоты сечения;
10 мм.
5 МАТЕРИАЛЫ ДЛЯ БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ
5.1 БЕТОН
Показатели качества бетона и их применение при проектировании
5.1.2 Основными показателями качества бетона, устанавливаемыми при проектировании, являются:
а) класс бетона по прочности на сжатие В;
в) марка по морозостойкости F (назначают для конструкций, подвергаемых действию попеременного замораживания и оттаивания);
г) марка по водонепроницаемости W (назначают для конструкций, к которым предъявляют требования ограничения водопроницаемости).
5.1.3 Для бетонных и железобетонных конструкций следует предусматривать бетоны следующих классов и марок:
а) классов по прочности на сжатие:
В10; В15; В20; В25; В30; В35; В40; В45; В50; В55; В60;
б) классов по прочности на осевое растяжение:
в) марок по морозостойкости:
F50; F75; F100; F150; F200; F300; F400; F500;
г) марок по водонепроницаемости: W2; W4; W6; W8; W10; W12.
5.1.4 Возраст бетона, отвечающий его классу по прочности на сжатие и осевое растяжение (проектный возраст), назначают при проектировании исходя из возможных реальных сроков загружения конструкций проектными нагрузками. При отсутствии этих данных класс бетона устанавливают в возрасте 28 сут.
Значение отпускной прочности бетона в элементах сборных конструкций следует назначать в соответствии с ГОСТ 13015.0 и стандартами на конструкции конкретных видов.
5.1.5 Для железобетонных конструкций рекомендуется применять класс бетона по прочности на сжатие не ниже В15.
5.1.6 Марку бетона по морозостойкости назначают в зависимости от требований, предъявляемых к конструкциям, режима их эксплуатации и условий окружающей среды.
Для надземных конструкций, подвергаемых атмосферным воздействиям окружающей среды при расчетной отрицательной температуре наружного воздуха в холодный период от минус 5 °С до минус 40 °С, принимают марку бетона по морозостойкости не ниже F75, а при расчетной температуре наружного воздуха выше минус 5 °С в указанных выше конструкциях марку бетона по морозостойкости не нормируют.
В остальных случаях требуемые марки бетона по морозостойкости устанавливают в зависимости от назначения конструкций и условий окружающей среды по специальным указаниям.
5.1.7 Марку бетона по водонепроницаемости назначают в зависимости от требований, предъявляемых к конструкциям, режима их эксплуатации и условий окружающей среды.
Для надземных конструкций, подвергаемых атмосферным воздействиям при расчетной отрицательной температуре наружного воздуха выше минус 40 °С, а также для наружных стен отапливаемых зданий марку бетона по водонепроницаемости не нормируют.
В остальных случаях требуемые марки бетона по водонепроницаемости устанавливают по специальным указаниям.
Нормативные и расчетные значения характеристик бетона
Нормативные значения прочностных характеристик бетона
5.1.8 Основными прочностными характеристиками бетона являются нормативные значения:
Нормативные значения сопротивления бетона осевому сжатию (призменная прочность) и осевому растяжению (при назначении класса бетона по прочности на сжатие) принимают в зависимости от класса бетона по прочности на сжатие В согласно таблице 5.1.
Расчетные значения прочностных характеристик бетона
1,3 - для предельных состояний по несущей способности (первая группа);
1,0 - для предельных состояний по эксплуатационной пригодности (вторая группа).
1,5 - для предельных состояний по несущей способности при назначении класса бетона по прочности на сжатие;
1,3 - для предельных состояний по несущей способности при назначении класса бетона по прочности на осевое растяжение;
1,0 - для предельных состояний по эксплуатационной пригодности.
Таблица 5.1
|
|
|
|
|
|
|
|
|
|
|
|
Вид сопротивления | Нормативные значения сопротивления бетона и и расчетные значения сопротивления бетона для предельных состояний второй группы и , МПа, при классе бетона по прочности на сжатие | ||||||||||
| В15 | В20 | В25 | В30 | В35 | В40 | В45 | В50 | В55 | В60 | |
Сжатие осевое (призменная прочность) , | 7,5 | 11,0 | 15,0 | 18,5 | 22,0 | 25,5 | 29,0 | 32,0 | 36,0 | 39,5 | 43,0 |
Растяжение осевое ,
| 0,85 | 1,1 | 1,35 | 1,55 | 1,75 | 1,95 | 2,1 | 2,25 | 2,45 | 2,6 | 2,75 |
Таблица 5.2
|
|
|
|
|
|
|
|
|
|
|
|
Вид сопротивления | Расчетные значения сопротивления бетона для предельных состояний первой группы и , МПа, при классе бетона по прочности на сжатие | ||||||||||
| В15 | В20 | В25 | В30 | В35 | В40 | В45 | В50 | В55 | В60 | |
Сжатие осевое (призменная прочность) | 6,0 | 8,5 | 11,5 | 14,5 | 17,0 | 19,5 | 22,0 | 25,0 | 27,5 | 30,0 | 33,0 |
Растяжение осевое | 0,56 | 0,75 | 0,9 | 1,05 | 1,15 | 1,3 | 1,4 | 1,5 | 1,6 | 1,7 | 1,8 |
Таблица 5.3
|
|
|
|
|
|
|
|
Вид сопротивления | Расчетные значения сопротивления бетона для предельных состояний первой группы , МПа, при классе бетона по прочности на осевое растяжение | ||||||
| 0,8 | 1,2 | 1,6 | 2,0 | 2,4 | 2,8 | 3,2 |
Растяжение осевое | 0,62 | 0,93 | 1,25 | 1,55 | 1,85 | 2,15 | 2,45 |
Деформационные характеристики бетона
5.1.11 Основными деформационными характеристиками бетона являются значения:
5.1.12 Значения предельных относительных деформаций бетона принимают равными:
при непродолжительном действии нагрузки:
при продолжительном действии нагрузки - по таблице 5.6 в зависимости от относительной влажности окружающей среды.
5.1.13 Значения начального модуля упругости бетона при сжатии и растяжении принимают в зависимости от класса бетона по прочности на сжатие B согласно таблице 5.4.
Таблица 5.4
|
|
|
|
|
|
|
|
|
|
|
Значения начального модуля упругости бетона при сжатии и растяжении , МПа·10 , при классе бетона по прочности на сжатие | ||||||||||
В15 | В20 | В25 | В30 | В35 | В40 | В45 | В50 | В55 | В60 | |
19,0 | 24,0 | 27,5 | 30,0 | 32,5 | 34,5 | 36,0 | 37,0 | 38,0 | 39,0 | 39,5 |
При продолжительном действии нагрузки значения начального модуля деформаций бетона определяют по формуле
Таблица 5.5
|
|
|
|
|
|
|
|
|
|
|
|
Относительная влажность воздуха окружающей среды, % | Значения коэффициента ползучести при классе бетона на сжатие | ||||||||||
| В15 | В20 | В25 | В30 | В35 | В40 | В45 | В50 | В55 | В60 | |
Выше 75 | 2,8 | 2,4 | 2,0 | 1,8 | 1,6 | 1,5 | 1,4 | 1,3 | 1,2 | 1,1 | 1,0 |
40-75 | 3,9 | 3,4 | 2,8 | 2,5 | 2,3 | 2,1 | 1,9 | 1,8 | 1,6 | 1,5 | 1,4 |
Ниже 40 | 5,6 | 4,8 | 4,0 | 3,6 | 3,2 | 3,0 | 2,8 | 2,6 | 2,4 | 2,2 | 2,0 |
Примечание - Относительную влажность воздуха окружающей среды принимают по СНиП 23-01 как среднюю месячную относительную влажность наиболее теплого месяца для района строительства. |
Таблица 5.6
|
|
|
|
|
|
|
Относительная влажность воздуха окружающей среды, % | Относительные деформации бетона при продолжительном действии нагрузки | |||||
| При сжатии | При растяжении | ||||
| ·10 | ·10 | ·10 | ·10 | ·10 | ·10 |
Выше 75 | 3,0 | 4,2 | 2,4 | 0,21 | 0,27 | 0,19 |
40-75 | 3,4 | 4,8 | 2,8 | 0,24 | 0,31 | 0,22 |
Ниже 40 | 4,0 | 5,6 | 3,4 | 0,28 | 0,36 | 0,26 |
Примечание - Относительную влажность воздуха окружающей среды принимают по СНиП 23-01 как среднюю месячную относительную влажность наиболее теплого месяца для района строительства. |
Диаграммы состояния бетона
5.1.17 В качестве расчетных диаграмм состояния бетона, определяющих связь между напряжениями и относительными деформациями, принимают трехлинейную и двухлинейную диаграммы (рисунок 5.1, а, б).
а - трехлинейная диаграмма состояния сжатого бетона;
б - двухлинейная диаграмма состояния сжатого бетона
Рисунок 5.1 - Диаграммы состояния сжатого бетона
Диаграммы состояния бетона используют при расчете железобетонных элементов по нелинейной деформационной модели.
- при продолжительном действии нагрузки - по таблице 5.6.
- при продолжительном действии нагрузки - по таблице 5.6.
5.1.21 При расчете прочности железобетонных элементов по нелинейной деформационной модели для определения напряженно-деформированного состояния сжатой зоны бетона используют диаграммы состояния сжатого бетона, приведенные в 5.1.18 и 5.1.19 с деформационными характеристиками, отвечающими непродолжительному действию нагрузки. При этом в качестве наиболее простой используют двухлинейную диаграмму состояния бетона.
5.1.22 При расчете образования трещин в железобетонных конструкциях по нелинейной деформационной модели для определения напряженно-деформированного состояния сжатого и растянутого бетона используют трехлинейную диаграмму состояния бетона, приведенную в 5.1.18 и 5.1.20 с деформационными характеристиками, отвечающими непродолжительному действию нагрузки. Двухлинейную диаграмму (5.1.19) как наиболее простую используют для определения напряженно-деформированного состояния растянутого бетона при упругой работе сжатого бетона.
5.1.23 При расчете деформаций железобетонных элементов по нелинейной деформационной модели при отсутствии трещин для определения напряженно-деформированного состояния в сжатом и растянутом бетоне используют трехлинейную диаграмму состояния бетона с учетом непродолжительного и продолжительного действия нагрузки. При наличии трещин для определения напряженно-деформированного состояния сжатого бетона помимо указанной выше диаграммы используют как наиболее простую двухлинейную диаграмму состояния бетона с учетом непродолжительного и продолжительного действия нагрузки.
5.1.24 При расчете раскрытия нормальных трещин по нелинейной деформационной модели для определения напряженно-деформированного состояния в сжатом бетоне используют диаграммы состояния, приведенные в 5.1.18 и 5.1.19 с учетом непродолжительного действия нагрузки. При этом в качестве наиболее простой используют двухлинейную диаграмму состояния бетона.
5.2 АРМАТУРА
Показатели качества арматуры
5.2.1 Для армирования железобетонных конструкций следует применять отвечающую требованиям соответствующих государственных стандартов или утвержденных в установленном порядке технических условий арматуру следующих видов:
- горячекатаную гладкую и периодического профиля с постоянной и переменной высотой выступов (соответственно кольцевой и серповидный профиль) диаметром 6-40 мм;
- термомеханически упрочненную периодического профиля с постоянной и переменной высотой выступов (соответственно кольцевой и серповидный профиль) диаметром 6-40 мм;
- холоднодеформированную периодического профиля диаметром 3-12 мм.
5.2.2 Основным показателем качества арматуры, устанавливаемым при проектировании, является класс арматуры по прочности на растяжение, обозначаемый:
А - для горячекатаной и термомеханически упрочненной арматуры;
В - для холоднодеформированной арматуры.
Классы арматуры по прочности на растяжение А и В отвечают гарантированному значению предела текучести (с округлением) с обеспеченностью не менее 0,95, определяемому по соответствующим стандартам.
Кроме того, в необходимых случаях к арматуре предъявляют требования по дополнительным показателям качества: свариваемость, пластичность, хладостойкость и др.
5.2.3 Для железобетонных конструкций, проектируемых в соответствии с требованиями настоящего Свода правил, следует предусматривать арматуру:
- гладкую класса А240 (A-I);
- периодического профиля классов А300 (А-II), А400 (A-III, А400С), А500 (А500С), В500 (Вр-I, В500С).
В качестве арматуры железобетонных конструкций, устанавливаемой по расчету, следует преимущественно применять арматуру периодического профиля классов А500 и А400, а также арматуру класса В500 в сварных сетках и каркасах. При обосновании экономической целесообразности допускается применять арматуру более высоких классов.
5.2.4 При выборе вида и марок стали для арматуры, устанавливаемой по расчету, а также прокатных сталей для закладных деталей следует учитывать температурные условия эксплуатации конструкций и характер их нагружения.
В конструкциях, эксплуатируемых при статической нагрузке в отапливаемых зданиях, а также на открытом воздухе и в неотапливаемых зданиях при расчетной температуре минус 40 °С и выше, может быть применена арматура всех вышеуказанных классов, за исключением арматуры класса А300 марки стали Ст5пс (диаметром 18-40 мм) и класса А240 марки стали Ст3кп, которые применяют при расчетной температуре минус 30 °С и выше.
При других условиях эксплуатации класс арматуры и марку стали принимают по специальным указаниям.
При проектировании анкеровки арматуры в бетоне и соединений арматуры внахлестку (без сварки) следует учитывать характер поверхности арматуры.
При проектировании сварных соединений арматуры следует учитывать способ изготовления арматуры.
5.2.5 Для монтажных (подъемных) петель элементов сборных железобетонных и бетонных конструкций следует применять горячекатаную арматурную сталь класса А240 марок Ст3сп и Ст3пс.
В случае если возможен монтаж конструкций при расчетной зимней температуре ниже минус 40 °С, для монтажных петель не допускается применять сталь марки Ст3пс.
Нормативные и расчетные значения характеристик арматуры
Нормативные значения прочностных характеристик арматуры
Таблица 5.7
|
|
|
Арматура класса | Номинальный диаметр арматуры, мм | Нормативные значения сопротивления растяжению и расчетные значения сопротивления растяжению для предельных состояний второй группы , МПа |
А240 | 6-40 | 240 |
А300 | 6-40 | 300 |
А400 | 6-40 | 400 |
А500 | 10-40 | 500 |
В500 | 3-12 | 500 |
Расчетные значения прочностных характеристик арматуры
для предельных состояний первой группы:
1,1 - для арматуры классов А240, А300 и А400;
1,15 - для арматуры класса А500;
1,2 - для арматуры класса В500;
1,0 - для предельных состояний второй группы.
Таблица 5.8.
|
|
|
|
Арматура классов | Расчетные значения сопротивления арматуры для предельных состояний первой группы, МПа | ||
| растяжению | сжатию | |
| продольной | поперечной (хомутов и отогнутых стержней) |
|
А240 | 215 | 170 | 215 |
А300 | 270 | 215 | 270 |
А400 | 355 | 285 | 355 |
А500 | 435 | 300 | 435 (400) |
В500 | 415 | 300 | 415 (360) |
Примечание - Значения в скобках используют только при расчете на кратковременное действие нагрузки. |
Деформационные характеристики арматуры
5.2.8 Основными деформационными характеристиками арматуры являются значения:
Диаграммы состояния арматуры
Диаграммы состояния арматуры при растяжении и сжатии принимают одинаковыми.
Рисунок 5.2 - Диаграмма состояния растянутой арматуры
6 РАСЧЕТ ЭЛЕМЕНТОВ БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ ПО ПРЕДЕЛЬНЫМ СОСТОЯНИЯМ ПЕРВОЙ ГРУППЫ
6.1 РАСЧЕТ БЕТОННЫХ ЭЛЕМЕНТОВ ПО ПРОЧНОСТИ
Общие положения
6.1.1 Бетонные элементы рассчитывают по прочности на действие продольных сжимающих сил, изгибающих моментов и поперечных сил, а также на местное сжатие.
6.1.2 Расчет по прочности бетонных элементов при действии продольной сжимающей силы (внецентренное сжатие) и изгибающего момента следует производить для сечений, нормальных к их продольной оси.
Расчет бетонных элементов прямоугольного, таврового сечений при действии усилий в плоскости симметрии нормального сечения производят по предельным усилиям согласно 6.1.7-6.1.12. В остальных случаях расчет производят на основе нелинейной деформационной модели согласно 6.2.21-6.2.31, принимая в расчетных зависимостях площадь арматуры равной нулю.
6.1.3 Бетонные элементы в зависимости от условий их работы и требований, предъявляемых к ним, рассчитывают по предельным усилиям без учета или с учетом сопротивления бетона растянутой зоны.
Рисунок 6.1 - Схема усилий и эпюра напряжений в сечении, нормальном к продольной оси внецентренно сжатого бетонного элемента, рассчитываемого по прочности без учета сопротивления бетона растянутой зоны
С учетом сопротивления бетона растянутой зоны (рисунок 6.2) производят расчет элементов, указанных в 4.1.2, б, а также элементов, в которых не допускаются трещины по условиям эксплуатации конструкций. При этом при расчете по предельным усилиям принимают, что предельное состояние характеризуется достижением предельных усилий в бетоне растянутой зоны, определяемых в предположении упругой работы бетона (6.1.9, 6.1.10, 6.1.12).
Рисунок 6.2 - Схема усилий и эпюра напряжений в сечении, нормальном к продольной оси изгибаемого (внецентренно сжатого) бетонного элемента, рассчитываемого по прочности с учетом сопротивления бетона растянутой зоны
6.1.5 Расчет по прочности бетонных элементов на действие местной нагрузки (местное сжатие) производят согласно указаниям 6.2.42- 6.2.44.
6.1.6 В бетонных элементах в случаях, указанных в 8.3.5, необходимо предусматривать конструктивную арматуру.
Расчет внецентренно сжатых элементов по предельным усилиям
6.1.9 Расчет внецентренно сжатых бетонных элементов при расположении продольной сжимающей силы в пределах поперечного сечения элемента производят из условия
Для элементов прямоугольного сечения
Таблица 6.1
|
|
|
|
|
6 | 10 | 15 | 20 | |
0,92 | 0,9 | 0,8 | 0,6 |
Внецентренно сжатые бетонные элементы, в которых появление трещин не допускается по условиям эксплуатации, независимо от расчета из условия (6.1) должны быть проверены с учетом сопротивления бетона растянутой зоны из условия
Для элементов прямоугольного сечения условие (6.4) имеет вид
В формулах (6.4) и (6.5):
6.1.10 Расчет внецентренно сжатых элементов при расположении продольной сжимающей силы за пределами поперечного сечения элемента производят из условий (6.4) и (6.5).
Расчет изгибаемых элементов по предельным усилиям
6.1.12 Расчет изгибаемых бетонных элементов следует производить из условия
Для элементов прямоугольного сечения
6.2 РАСЧЕТ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ ПО ПРОЧНОСТИ
Общие положения
6.2.1 Железобетонные элементы рассчитывают по прочности на действие изгибающих моментов, продольных сил, поперечных сил, крутящих моментов и на местное действие нагрузки (местное сжатие, продавливание).
Расчет по прочности железобетонных элементов на действие изгибающих моментов и продольных сил
Общие положения
6.2.2 Расчет по прочности железобетонных элементов при действии изгибающих моментов и продольных сил (внецентренное сжатие или растяжение) следует производить для сечений, нормальных к их продольной оси.
Расчет по прочности нормальных сечений железобетонных элементов следует производить на основе нелинейной деформационной модели согласно 6.2.21-6.2.31.
Допускается расчет железобетонных элементов прямоугольного, таврового и двутаврового сечений с арматурой, расположенной у перпендикулярных плоскости изгиба граней элемента, при действии усилий в плоскости симметрии нормальных сечений производить на основе предельных усилий согласно 6.2.5-6.2.17.
6.2.3 При расчете внецентренно сжатых элементов следует учитывать влияние прогиба на их несущую способность, как правило, путем расчета конструкций по деформированной схеме.
6.2.4 Для железобетонных элементов, у которых предельное усилие по прочности оказывается меньше предельного усилия по образованию трещин (7.2.5-7.2.11), площадь сечения продольной растянутой арматуры должна быть увеличена по сравнению с требуемой из расчета по прочности не менее чем на 15% или соответствовать предельному усилию по образованию трещин.
Расчет по прочности нормальных сечений по предельным усилиям
6.2.5 Предельные усилия в сечении, нормальном к продольной оси элемента, следует определять исходя из следующих предпосылок:
- сопротивление бетона растяжению принимают равным нулю;
- деформации (напряжения) в арматуре определяют в зависимости от высоты сжатой зоны бетона;
Расчет изгибаемых элементов
6.2.9 Расчет по прочности сечений изгибаемых элементов производят из условия
Рисунок 6.3 - Схема усилий и эпюра напряжений в сечении, нормальном к продольной оси изгибаемого железобетонного элемента, при его расчете по прочности
а) если граница проходит в полке (рисунок 6.4), т.е. соблюдается условие
а - в полке; б - в ребре
Рисунок 6.4 - Положение границы сжатой зоны в сечении изгибаемого железобетонного элемента
в) при консольных свесах полки:
Расчет внецентренно сжатых элементов
6.2.15 Расчет по прочности прямоугольных сечений внецентренно сжатых элементов производят из условия
Рисунок 6.5 - Схема усилий и эпюра напряжений в сечении, нормальном к продольной оси внецентренно сжатого железобетонного элемента, при расчете его по прочности
Таблица 6.2
|
|
|
|
|
6 | 10 | 15 | 20 | |
0,92 | 0,9 | 0,83 | 0,7 |
в) для элементов с шарнирным несмещаемым опиранием на одном конце, а на другом конце:
г) для элементов с податливым шарнирным опиранием (допускающим ограниченное смещение опоры) на одном конце, а на другом конце:
д) для элементов с несмещаемыми заделками на двух концах:
е) для элементов с ограниченно смещаемыми заделками на двух концах:
Расчет центрально-растянутых элементов
6.2.19 Расчет по прочности сечений центрально-растянутых элементов следует производить из условия
Расчет внецентренно растянутых элементов
Расчет по прочности нормальных сечений на основе нелинейной деформационной модели
6.2.21 При расчете по прочности усилия и деформации в сечении, нормальном к продольной оси элемента, определяют на основе нелинейной деформационной модели, использующей уравнения равновесия внешних сил и внутренних усилий в сечении элемента, а также следующие положения:
- распределение относительных деформаций бетона и арматуры по высоте сечения элемента принимают по линейному закону (гипотеза плоских сечений);
- связь между осевыми напряжениями и относительными деформациями бетона и арматуры принимают в виде диаграмм состояния (деформирования) бетона и арматуры (5.1.17, 5.2.11);
6.2.22 Переход от эпюры напряжений в бетоне к обобщенным внутренним усилиям определяют с помощью процедуры численного интегрирования напряжений по нормальному сечению. Для этого нормальное сечение условно разделяют на малые участки: при косом внецентренном сжатии (растяжении) и косом изгибе - по высоте и ширине сечения; при внецентренном сжатии (растяжении) и изгибе в плоскости оси симметрии поперечного сечения элемента - только по высоте сечения. Напряжения в пределах малых участков принимают равномерно распределенными (усредненными).
6.2.23 При расчете элементов с использованием деформационной модели принимают:
- значения сжимающей продольной силы, а также сжимающих напряжений и деформаций укорочения бетона и арматуры - со знаком "минус";
- значения растягивающей продольной силы, а также растягивающих напряжений и деформаций удлинения бетона и арматуры - со знаком "плюс".
Рисунок 6.7 - Расчетная схема нормального сечения железобетонного элемента
6.2.24 При расчете нормальных сечений по прочности (рисунок 6.7) в общем случае используют:
уравнения равновесия внешних сил и внутренних усилий в нормальном сечении элемента:
уравнения, определяющие распределение деформаций по сечению элемента:
зависимости, связывающие напряжения и относительные деформации бетона и арматуры:
В уравнениях (6.36)-(6.42):
6.2.25 Расчет нормальных сечений железобетонных элементов по прочности производят из условий
Обозначения в формулах см.6.2.24.
Для изгибаемых и внецентренно сжатых бетонных элементов, в которых не допускаются трещины, расчет производят с учетом работы растянутого бетона в поперечном сечении элемента из условия
Расчет по прочности железобетонных элементов при действии поперечных сил
Общие положения
6.2.32 Расчет по прочности железобетонных элементов при действии поперечных сил производят на основе модели наклонных сечений.
При расчете по модели наклонных сечений должны быть обеспечены прочность элемента по полосе между наклонными сечениями и по наклонному сечению на действие поперечных сил, а также прочность по наклонному сечению на действие момента.
Прочность по наклонной полосе характеризуется максимальным значением поперечной силы, которое может быть воспринято наклонной полосой, находящейся под воздействием сжимающих усилий вдоль полосы и растягивающих усилий от поперечной арматуры, пересекающей наклонную полосу. При этом прочность бетона определяют по сопротивлению бетона осевому сжатию с учетом влияния сложного напряженного состояния в наклонной полосе.
Расчет железобетонных элементов по полосе между наклонными сечениями
6.2.33 Расчет изгибаемых железобетонных элементов по бетонной полосе между наклонными сечениями производят из условия
Расчет железобетонных элементов по наклонным сечениям на действие поперечных сил
6.2.34 Расчет изгибаемых элементов по наклонному сечению (рисунок 6.8) производят из условия
Рисунок 6.8 - Схема усилий при расчете железобетонных элементов по наклонному сечению на действие поперечных сил
Допускается производить расчет наклонных сечений, не рассматривая наклонные сечения при определении поперечной силы от внешней нагрузки, из условия
Поперечную арматуру учитывают в расчете, если соблюдается условие
Можно учитывать поперечную арматуру и при невыполнении этого условия, если в условии (6.66) принимать
Поперечная арматура должна отвечать конструктивным требованиям, приведенным 8.3.9-8.3.17.
Расчет железобетонных элементов по наклонным сечениям на действие моментов
6.2.35 Расчет железобетонных элементов по наклонным сечениям на действие моментов (рисунок 6.9) производят из условия
Рисунок 6.9 - Схема усилий при расчете железобетонных элементов по наклонному сечению на действие моментов
Расчет по прочности железобетонных элементов при действии крутящих моментов
Общие положения
6.2.36 Расчет по прочности железобетонных элементов на действие крутящих моментов производят на основе модели пространственных сечений.
При расчете по модели пространственных сечений рассматривают сечения, образованные наклонными отрезками прямых, следующими по трем растянутым граням элемента, и замыкающим отрезком прямой по четвертой сжатой грани элемента.
Расчет железобетонных элементов на действие крутящих моментов производят по прочности элемента между пространственными сечениями и по прочности пространственных сечений.
Прочность по бетону между пространственными сечениями характеризуется максимальным значением крутящего момента, определяемым по сопротивлению бетона осевому сжатию с учетом напряженного состояния в бетоне между пространственными сечениями.
Расчет по пространственным сечениям производят на основе уравнений равновесия всех внутренних и внешних сил относительно оси, расположенной в центре сжатой зоны пространственного сечения элемента. Внутренние моменты включают момент, воспринимаемый арматурой, следующей вдоль оси элемента, и арматурой, следующей поперек оси элемента, пересекающей пространственное сечение и расположенной в растянутой зоне пространственного сечения и у растянутой грани элемента, противоположной сжатой зоне пространственного сечения. При этом усилия, воспринимаемые арматурой, определяют соответственно по расчетным значениям сопротивления растяжению продольной и поперечной арматуры.
При расчете рассматривают все положения пространственного сечения, принимая сжатую зону пространственного сечения у нижней, боковой и верхней граней элемента.
Расчет на совместное действие крутящих и изгибающих моментов, а также крутящих моментов и поперечных сил производят исходя из уравнений взаимодействия между соответствующими силовыми факторами.
Расчет на действие крутящего момента
6.2.37 Расчет по прочности элемента между пространственными сечениями производят из условия
6.2.38 Расчет по прочности пространственных сечений производят из условия (рисунок 6.10)
a - растянутая арматура у нижней грани элемента; б - растянутая арматура у боковой грани элемента
Рисунок 6.10 - Схемы усилий в пространственных сечениях при расчете на действие крутящего момента
Значение соотношения между усилиями в поперечной и продольной арматуре, учитываемое в условии (6.77), приведено ниже.
Допускается расчет на действие крутящего момента производить, не рассматривая пространственные сечения при определении крутящего момента от внешней нагрузки, из условия
Расчет производят для ряда нормальных сечений, расположенных по длине элемента, для арматуры, расположенной у каждой рассматриваемой грани элемента.
При действии крутящих моментов следует соблюдать конструктивные требования, приведенные в разделе 8.
Расчет на совместное действие крутящего и изгибающего моментов
6.2.39 Расчет по прочности элемента между пространственными сечениями производят согласно 6.2.37.
6.2.40 Расчет по прочности пространственного сечения производят из условия
При расчете на совместное действие крутящего и изгибающего моментов рассматривают пространственное сечение с растянутой арматурой, расположенной у грани, растянутой от изгибающего момента, т.е. у грани, нормальной к плоскости действия изгибающего момента.
При совместном действии крутящих и изгибающих моментов следует соблюдать расчетные и конструктивные требования, приведенные в 6.2.38 и разделе 8.
Расчет на совместное действие крутящего момента и поперечной силы
6.2.41 Расчет по прочности элемента между пространственными сечениями производят из условия
6.2.42 Расчет по прочности пространственного сечения производят из условия (6.89), в котором принимают:
При расчете на совместное действие крутящего момента и поперечной силы рассматривают пространственное сечение с растянутой арматурой, расположенной у одной из граней, растянутой от поперечной силы, - т.е. у грани, параллельной плоскости действия поперечной силы.
При совместном действии крутящих моментов и поперечных сил следует соблюдать расчетные и конструктивные требования, приведенные в 6.2.37, 6.2.32-6.2.35 и в разделе 8.
Расчет железобетонных элементов на местное сжатие
6.2.43 Расчет железобетонных элементов на местное сжатие (смятие) производят при действии сжимающей силы, приложенной на ограниченной площади нормально к поверхности железобетонного элемента. При этом учитывают повышенное сопротивление сжатию бетона в пределах грузовой площади (площади смятия) за счет объемного напряженного состояния бетона под грузовой площадью, зависящее от расположения грузовой площади на поверхности элемента.
При наличии косвенной арматуры в зоне местного сжатия учитывают дополнительное повышение сопротивления сжатию бетона под грузовой площадью за счет сопротивления косвенной арматуры.
Расчет элементов на местное сжатие при отсутствии косвенной арматуры производят согласно 6.2.44, а при наличии косвенной арматуры - согласно 6.2.45.
6.2.44 Расчет элементов на местное сжатие при отсутствии косвенной арматуры (рисунок 6.11) производят из условия
а - вдали от краев элемента; б - по всей ширине элемента: в - у края (торца) элемента по всей его ширине; г - на углу элемента, д - у одного края элемента; е - вблизи одного края элемента
Рисунок 6.11 - Схемы для расчета элементов на местное сжатие при расположении местной нагрузки
но принимаемый не более 2,5 и не менее 1,0.
В формуле (6.92):
6.2.45 Расчет элементов на местное сжатие при наличии косвенной арматуры в виде сварных сеток производят из условия
Значение местной сжимающей силы, воспринимаемое элементом с косвенным армированием (правая часть условия (6.93)), принимают не более удвоенного значения местной сжимающей силы, воспринимаемого элементом без косвенного армирования (правая часть условия (6.90)).
Косвенное армирование должно отвечать конструктивным требованиям, приведенным в 8.3.16.
Расчет железобетонных элементов на продавливание
Общие положения
6.2.46 Расчет на продавливание производят для плоских железобетонных элементов (плит) при действии на них (нормально к плоскости элемента) местных, концентрированно приложенных усилий - сосредоточенных силы и изгибающего момента.
При действии сосредоточенной силы касательные усилия, воспринимаемые бетоном и арматурой, принимают равномерно распределенными по всей площади расчетного поперечного сечения. При действии изгибающего момента касательные усилия, воспринимаемые бетоном и поперечной арматурой, принимают с учетом неупругой работы бетона и арматуры. Допускается касательные усилия, воспринимаемые бетоном и арматурой, принимать линейно изменяющимися по длине расчетного поперечного сечения в направлении действия момента с максимальными касательными усилиями противоположного знака у краев расчетного поперечного сечения в этом направлении.
Расчет на продавливание при действии сосредоточенной силы и отсутствии поперечной арматуры производят согласно 6.2.47, при действии сосредоточенной силы и наличии поперечной арматуры - согласно 6.2.48, при действии сосредоточенных силы и изгибающего момента и отсутствии поперечной арматуры - согласно 6.2.49 и при действии сосредоточенных силы и изгибающего момента и наличии поперечной арматуры - согласно 6.2.50.
Расчетный контур поперечного сечения принимают: при расположении площадки передачи нагрузки внутри плоского элемента - замкнутым и расположенным вокруг площадки передачи нагрузки (рисунок 6.12, а, г), при расположении площадки передачи нагрузки у края или угла плоского элемента - в виде двух вариантов: замкнутым, расположенным вокруг площадки передачи нагрузки, и незамкнутым, следующим от краев плоского элемента (рисунок 6.12, б, в), в этом случае учитывают наименьшую несущую способность при двух вариантах расположения расчетного контура поперечного сечения.
а - площадка приложения нагрузки внутри плоского элемента; б, в - то же, у края плоского элемента; г - при крестообразном расположении поперечной арматуры
Рисунок 6.12 - Схема расчетных контуров поперечного сечения при продавливании
Расчет элементов на продавливание при действии сосредоточенной силы
6.2.47 Расчет элементов без поперечной арматуры на продавливание при действии сосредоточенной силы производят из условия
1 - расчетное поперечное сечение; 2 - контур расчетного поперечного сечения; 3 - контур площадки приложения нагрузки
Рисунок 6.13 - Схема для расчета железобетонных элементов без поперечной арматуры на продавливание
6.2.48 Расчет элементов с поперечной арматурой на продавливание при действии сосредоточенной силы (рисунок 6.14) производят из условия
1 - расчетное поперечное сечение; 2 - контур расчетного поперечного сечения; 3 - границы зоны, в пределах которых в расчете учитывается поперечная арматура; 4 - контур расчетного поперечного сечения без учета в расчете поперечной арматуры; 5 - контур площадки приложения нагрузки
Рисунок 6.14 - Схема для расчета железобетонных плит с вертикальной, равномерно распределенной поперечной арматурой на продавливание
Поперечная арматура должна удовлетворять конструктивным требованиям, приведенным в 8.3.9-8.3.17.
Расчет элементов на продавливание при действии сосредоточенных силы и изгибающего момента
6.2.49 Расчет элементов без поперечной арматуры на продавливание при совместном действии сосредоточенных силы и изгибающего момента (рисунок 6.13) производят из условия
При действии изгибающих моментов в двух взаимно перпендикулярных плоскостях расчет производят из условия
При расположении сосредоточенной силы внецентренно относительно центра тяжести контура расчетного поперечного сечения значения изгибающих сосредоточенных моментов от внешней нагрузки определяют с учетом дополнительного момента от внецентренного приложения сосредоточенной силы относительно центра тяжести контура расчетного поперечного сечения.
6.2.50 Расчет прочности элементов с поперечной арматурой на продавливание при действии сосредоточенных силы и изгибающего момента (рисунок 6.14) производят из условия
При действии сосредоточенных изгибающих моментов в двух взаимно перпендикулярных плоскостях расчет производят из условия
Поперечная арматура должна отвечать конструктивным требованиям, приведенным в 8.3.9-8.3.17.
Положение центра тяжести расчетного контура относительно выбранной оси определяют по формуле
Значение момента инерции расчетного контура определяют по формуле
или
7 РАСЧЕТ ЭЛЕМЕНТОВ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ ПО ПРЕДЕЛЬНЫМ СОСТОЯНИЯМ ВТОРОЙ ГРУППЫ
7.1 ОБЩИЕ ПОЛОЖЕНИЯ
7.1.1 Расчеты по предельным состояниям второй группы включают:
- расчет по раскрытию трещин;
- расчет по деформациям.
7.1.2 Расчет по образованию трещин производят для проверки необходимости расчета по раскрытию трещин, а также для проверки необходимости учета трещин при расчете по деформациям.
7.2 РАСЧЕТ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ ПО РАСКРЫТИЮ ТРЕЩИН
Общие положения
7.2.1 Расчет железобетонных элементов по раскрытию трещин производят в тех случаях, когда соблюдается условие
Для центрально-растянутых элементов ширину раскрытия трещин определяют при соблюдении условия
7.2.2 Расчет железобетонных элементов производят по непродолжительному и продолжительному раскрытию трещин.
Непродолжительное раскрытие трещин определяют от совместного действия постоянных и временных (длительных и кратковременных) нагрузок, продолжительное - только от постоянных и временных длительных нагрузок (4.2.4).
7.2.3 Расчет по раскрытию трещин производят из условия
а) из условия обеспечения сохранности арматуры:
0,3 мм - при продолжительном раскрытии трещин;
0,4 мм - при непродолжительном раскрытии трещин;
б) из условия ограничения проницаемости конструкций:
0,2 мм - при продолжительном раскрытии трещин;
0,3 мм - при непродолжительном раскрытии трещин.
- при продолжительном раскрытии
- при непродолжительном раскрытии
Определение момента образования трещин, нормальных к продольной оси элемента
7.2.6 Определение момента образования трещин производят с учетом неупругих деформаций растянутого бетона согласно 7.2.7.
Допускается момент образования трещин определять без учета неупругих деформаций растянутого бетона по 7.2.8. Если при этом условия (7.3) и (7.24) не удовлетворяются, то момент образования трещин следует определять с учетом неупругих деформаций растянутого бетона.
7.2.7 Момент образования трещин с учетом неупругих деформаций растянутого бетона определяют с учетом следующих положений:
- сечения после деформирования остаются плоскими;
- эпюру напряжений в сжатой зоне бетона принимают треугольной формы, как для упругого тела (рисунок 7.1);
- напряжения в арматуре принимают в зависимости от относительных деформаций как для упругого тела.
1 - уровень центра тяжести приведенного поперечного сечения
Рисунок 7.1 - Схема напряженно-деформированного состояния сечения элемента при проверке образования трещин при действии изгибающего момента (а), изгибающего момента и продольной силы (б)
7.2.8 Момент образования трещин без учета неупругих деформаций растянутого бетона определяют как для сплошного упругого тела по формуле
7.2.11 Определение момента образования трещин на основе нелинейной деформационной модели производят исходя из общих положений, приведенных в 5.1.22 и 6.2.2-6.2.31, но с учетом работы бетона в растянутой зоне нормального сечения, определяемой диаграммой состояния растянутого бетона согласно 5.1.20. Расчетные характеристики материалов принимают для предельных состояний второй группы.
Расчет ширины раскрытия трещин, нормальных к продольной оси элемента
7.2.12 Ширину раскрытия нормальных трещин определяют по формуле
1,0 - при непродолжительном действии нагрузки;
1,4 - при продолжительном действии нагрузки;
0,5 - для арматуры периодического профиля;
0,8 - для гладкой арматуры;
1,0 - для элементов изгибаемых и внецентренно сжатых;
1,2 - для растянутых элементов.
1 - уровень центра тяжести приведенного поперечного сечения
Рисунок 7.2 - Схема напряженно-деформированного состояния элемента с трещинами при действии изгибающего момента (а, б), изгибающего момента и продольной силы (в)
В формулах (7.19) и (7.20) знак "плюс" принимают при растягивающей, а знак "минус" - при сжимающей продольной силе.
7.3 РАСЧЕТ ЭЛЕМЕНТОВ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ ПО ДЕФОРМАЦИЯМ
Общие положения
7.3.1 Расчет элементов железобетонных конструкций по деформациям производят с учетом эксплуатационных требований, предъявляемых к конструкциям.
Расчет по деформациям следует производить на действие:
постоянных, временных длительных и кратковременных нагрузок (4.2.4) при ограничении деформаций технологическими или конструктивными требованиями;
постоянных и временных длительных нагрузок при ограничении деформаций эстетическими требованиями.
7.3.2 Значения предельно допустимых деформаций элементов принимают согласно СНиП 2.01.07 и нормативным документам на отдельные виды конструкций.
Расчет железобетонных элементов по прогибам
7.3.3 Расчет железобетонных элементов по прогибам производят из условия
Прогибы железобетонных конструкций определяют по общим правилам строительной механики в зависимости от изгибных, сдвиговых и осевых деформационных характеристик железобетонного элемента в сечениях по его длине (кривизне, углов сдвига и т.д.).
В тех случаях, когда прогибы железобетонных элементов в основном зависят от изгибных деформаций, значения прогибов определяют по кривизнам элементов согласно 7.3.4-7.3.6 или по жесткостным характеристикам согласно 7.3.5 и 7.3.16.
При действии постоянных, длительных и кратковременных нагрузок прогиб балок или плит во всех случаях не должен превышать 1/150 пролета и 1/75 вылета консоли.
7.3.4 Прогиб железобетонных элементов, обусловленный деформацией изгиба, определяют по формуле
7.3.5 Для изгибаемых элементов постоянного по длине элемента сечения, не имеющих трещин, прогибы определяют по общим правилам строительной механики с использованием жесткости поперечного сечения, определяемой по формуле (7.31).
7.3.6 Для изгибаемых элементов постоянного по длине элемента сечения, имеющих трещины, на каждом участке, в пределах которого изгибающий момент не меняет знак, кривизну допускается вычислять для наиболее напряженного сечения, принимая ее для остальных сечений такого участка изменяющейся пропорционально значениям изгибающего момента.
Для свободно опертых или консольных элементов максимальный прогиб определяют по формуле
Определение кривизны железобетонных элементов
Общие положения
7.3.7 Кривизну изгибаемых, внецентренно сжатых и внецентренно растянутых элементов для вычисления их прогибов определяют:
а) для элементов или участков элемента, где в растянутой зоне не образуются нормальные к продольной оси трещины, - согласно 7.3.8, 7.3.10;
б) для элементов или участков элемента, где в растянутой зоне имеются трещины, - согласно 7.3.8, 7.3.9 и 7.3.11.
Элементы или участки элементов рассматривают без трещин, если трещины не образуются (т.е. условие (7.1) не выполняется) при действии полной нагрузки, включающей постоянную, временную длительную и кратковременную нагрузки.
Кривизну железобетонных элементов с трещинами и без трещин можно также определять на основе деформационной модели согласно 7.3.17.
7.3.8 Полную кривизну изгибаемых, внецентренно сжатых и внецентренно растянутых элементов определяют по формулам:
для участков без трещин в растянутой зоне
для участков с трещинами в растянутой зоне
В формуле (7.28):
В формуле (7.29):
Жесткость железобетонного элемента на участке без трещин в растянутой зоне
В этом случае для прямоугольного сечения
Значения модуля деформации бетона в формулах (7.31), (7.35) принимают равными:
при непродолжительном действии нагрузки
при продолжительном действии нагрузки
Жесткость железобетонного элемента на участке с трещинами в растянутой зоне
7.3.11 Жесткость железобетонного элемента на участках с трещинами в растянутой зоне определяют с учетом следующих положений:
- сечения после деформирования остаются плоскими;
- напряжения в бетоне сжатой зоны определяют как для упругого тела;
- работу растянутого бетона в сечении с нормальной трещиной не учитывают;
1 - уровень центра тяжести приведенного без учета растянутой зоны бетона поперечного сечения
Рисунок 7.3 - Приведенное поперечное сечение (а) и схема напряженно-деформированного состояния элемента с трещинами (б) для расчета его по деформациям при действии изгибающего момента
7.3.12 Для изгибаемых элементов положение нейтральной оси (средняя высота сжатой зоны бетона) определяют из уравнения
Для прямоугольных сечений только с растянутой арматурой высоту сжатой зоны определяют по формуле
Для прямоугольных сечений с растянутой и сжатой арматурой высоту сжатой зоны определяют по формуле
Для тавровых (с полкой в сжатой зоне) и двутавровых сечений высоту сжатой зоны определяют по формуле
Для внецентренно сжатых и внецентренно растянутых элементов положение нейтральной оси (высоту сжатой зоны) определяют из уравнения
Значения геометрических характеристик сечения элемента определяют по общим правилам расчета сечения упругих элементов.
В формуле (7.45) знак "плюс" принимают при сжимающей, а знак "минус" - при растягивающей продольной силе.
7.3.13 Жесткость изгибаемых железобетонных элементов допускается определять по формуле
7.3.14 Значения коэффициентов приведения арматуры к бетону принимают равными:
для сжатой арматуры
для растянутой арматуры
Определение кривизны железобетонных элементов на основе нелинейной деформационной модели
7.3.16 Полную кривизну железобетонных элементов на участках без трещин в растянутой зоне сечения определяют по формуле (7.28), а на участках с трещинами в растянутой зоне сечения - по формуле (7.29).
Значения кривизны, входящие в формулы (7.28) и (7.29), определяют из решения системы уравнений (6.36)-(6.40). При этом для элементов с нормальными трещинами в растянутой зоне напряжение в арматуре, пересекающей трещины, определяют по формуле
где
При определении кривизны от непродолжительного действия нагрузки в расчете используют диаграммы кратковременного деформирования сжатого и растянутого бетона, а при определении кривизны от продолжительного действия нагрузки - диаграммы длительного деформирования бетона с расчетными характеристиками для предельных состояний второй группы.
Для частных случаев действия внешней нагрузки (изгиб в двух плоскостях, изгиб в плоскости оси симметрии поперечного сечения элемента и т.п.) кривизны, входящие в формулы (7.28) и (7.29), определяют из решения систем уравнений, указанных в 6.2.27-6.2.29.
8 КОНСТРУКТИВНЫЕ ТРЕБОВАНИЯ
8.1 ОБЩИЕ ПОЛОЖЕНИЯ
8.1.1 Для обеспечения несущей способности, пригодности к нормальной эксплуатации и долговечности бетонных и железобетонных конструкций помимо требований, определяемых расчетом, следует выполнять конструктивные требования:
- по геометрическим размерам элементов конструкций;
- по армированию (содержанию и расположению арматуры, толщине защитного слоя бетона, анкеровке и соединениям арматуры);
- по защите конструкций от неблагоприятного влияния воздействий среды.
8.2 ГЕОМЕТРИЧЕСКИЕ РАЗМЕРЫ КОНСТРУКЦИЙ
8.2.1 Минимальные геометрические размеры сечений конструкций следует назначать такими, чтобы обеспечивать:
- возможность надлежащего размещения арматуры (расстояния между стержнями, защитный слой бетона и т.д.), ее анкеровки и совместной работы с бетоном;
- достаточную жесткость конструкций;
- необходимую огнестойкость, водонепроницаемость конструкций, тепло- и звукоизоляцию, коррозионную стойкость, радиационную защиту и т.п.;
- возможность качественного изготовления при бетонировании конструкций.
200 - для железобетонных элементов;
120 - для колонн, являющихся элементами зданий;
90 - для бетонных элементов.
8.2.3 В конструкциях зданий и сооружений следует предусматривать их разрезку постоянными и временными температурно-усадочными швами, расстояния между которыми назначают в зависимости от климатических условий, конструктивных особенностей сооружения, последовательности производства работ и т.п.
При неравномерной осадке фундаментов следует предусматривать разделение конструкций осадочными швами.
8.3 АРМИРОВАНИЕ
Защитный слой бетона
8.3.1 Арматура, расположенная внутри сечения конструкции, должна иметь защитный слой бетона (расстояние от поверхности apматуры до соответствующей грани конструкций), чтобы обеспечивать:
- совместную работу арматуры с бетоном;
- анкеровку арматуры в бетоне и возможность устройства стыков арматурных элементов;
- сохранность арматуры от воздействий окружающей среды (в том числе при наличии агрессивных воздействий);
- огнестойкость и огнесохранность.
8.3.2 Толщину защитного слоя бетона назначают исходя из требований 8.3.1 с учетом типа конструкций, роли арматуры в конструкциях (продольная рабочая, поперечная, распределительная, конструктивная арматура), условий окружающей среды и диаметра арматуры.
Минимальные значения толщины слоя бетона рабочей арматуры следует принимать по таблице 8.1.
Таблица 8.1
|
|
Условия эксплуатации конструкций зданий | Толщина защитного слоя бетона, мм, не менее |
1. В закрытых помещениях при нормальной и пониженной влажности | 20 |
2. В закрытых помещениях при повышенной влажности (при отсутствии дополнительных защитных мероприятий) | 25 |
3. На открытом воздухе (при отсутствии дополнительных защитных мероприятий) | 30 |
4. В грунте (при отсутствии дополнительных защитных мероприятий), в фундаментах при наличии бетонной подготовки | 40 |
Для сборных элементов минимальные значения толщины защитного слоя бетона рабочей арматуры, указанные в таблице 8.1, уменьшают на 5 мм.
Для конструктивной арматуры минимальные значения толщины защитного слоя бетона принимают на 5 мм меньше по сравнению с требуемыми для рабочей арматуры.
Во всех случаях толщину защитного слоя бетона следует также принимать не менее диаметра стержня арматуры.
Минимальные расстояния между стержнями арматуры
8.3.3 Минимальные расстояния в свету между стержнями арматуры следует принимать такими, чтобы обеспечить совместную работу арматуры с бетоном и качественное изготовление конструкций, связанное с укладкой и уплотнением бетонной смеси, но не менее наибольшего диаметра стержня, а также не менее:
25 мм - при горизонтальном или наклонном положении стержней при бетонировании для нижней арматуры, расположенной в один или два ряда;
30 мм - то же, для верхней арматуры;
50 мм - то же, при расположении нижней арматуры более чем в два ряда (кроме стержней двух нижних рядов), а также при вертикальном положении стержней при бетонировании.
При стесненных условиях допускается располагать стержни группами - пучками (без зазора между ними). При этом расстояния в свету между пучками должны быть также не менее приведенного диаметра стержня, эквивалентного по площади сечения пучка арматуры, принимаемого равным:
Продольное армирование
В элементах с продольной арматурой, расположенной равномерно по контуру сечения, а также в центрально-растянутых элементах минимальную площадь сечения всей продольной арматуры следует принимать вдвое больше указанных выше значений и относить их к полной площади сечения бетона.
8.3.5 В бетонных конструкциях следует предусматривать конструктивное армирование:
- в местах резкого изменения размеров сечения элементов;
- в бетонных стенах под и над проемами;
8.3.6 В железобетонных линейных конструкциях и плитах наибольшие расстояния между осями стержней продольной арматуры, обеспечивающие эффективное вовлечение в работу бетона, равномерное распределение напряжений и деформаций, а также ограничение ширины раскрытия трещин между стержнями арматуры, должны быть не более:
в железобетонных балках и плитах:
в железобетонных колоннах:
400 мм - в направлении, перпендикулярном плоскости изгиба;
500 мм - в направлении плоскости изгиба.
8.3.7 В балках и ребрах шириной более 150 мм число продольных рабочих растянутых стержней в поперечном сечении должно быть не менее двух. При ширине элемента 150 мм и менее допускается устанавливать в поперечном сечении один продольный стержень.
8.3.8 В балках до опоры следует доводить стержни продольной рабочей арматуры с площадью сечения не менее 1/2 площади сечения стержней в пролете и не менее двух стержней.
В плитах до опоры следует доводить стержни продольной рабочей арматуры на 1 м ширины плиты с площадью сечения не менее 1/3 площади сечения стержней на 1 м ширины плиты в пролете.
Поперечное армирование
8.3.9 Поперечную арматуру следует устанавливать исходя из расчета на восприятие усилий, а также с целью ограничения развития трещин, удержания продольных стержней в проектном положении и закрепления их от бокового выпучивания в любом направлении.
Поперечную арматуру устанавливают у всех поверхностей железобетонных элементов, вблизи которых ставится продольная арматура.
8.3.10 Диаметр поперечной арматуры (хомутов) в вязаных каркасах внецентренно сжатых элементов принимают не менее 0,25 наибольшего диаметра продольной арматуры и не менее 6 мм.
Диаметр поперечной арматуры в вязаных каркасах изгибаемых элементов принимают не менее 6 мм.
В сварных каркасах диаметр поперечной арматуры принимают не менее диаметра, устанавливаемого из условия сварки с наибольшим диаметром продольной арматуры.
В сплошных плитах, а также в часторебристых плитах высотой менее 300 мм и в балках (ребрах) высотой менее 150 мм на участке элемента, где поперечная сила по расчету воспринимается только бетоном, поперечную арматуру можно не устанавливать.
8.3.13 Конструкция хомутов (поперечных стержней) во внецентренно сжатых линейных элементах должна быть такой, чтобы продольные стержни (по крайней мере через один) располагались в местах перегибов, а эти перегибы - на расстоянии не более 400 мм по ширине грани. При ширине грани не более 400 мм и числе продольных стержней у этой грани не более четырех допускается охват всех продольных стержней одним хомутом.
8.3.14 В элементах, на которые действуют крутящие моменты, поперечная арматура (хомуты) должна образовывать замкнутый контур.
Расстояния между стержнями поперечной арматуры в направлении, параллельном сторонам расчетного контура, принимают не более 1/4 длины соответствующей стороны расчетного контура.
По глубине сетки располагают:
- при толщине элемента более удвоенного большего размера грузовой площади - в пределах удвоенного размера грузовой площади;
- при толщине элемента менее удвоенного большего размера грузовой площади - в пределах толщины элемента.
8.3.17 Поперечная арматура, предусмотренная для восприятия поперечных сил и крутящих моментов, а также учитываемая при расчете на продавливание, должна иметь надежную анкеровку по концам путем приварки или охвата продольной арматуры, обеспечивающую равнопрочность соединений и поперечной арматуры.
Анкеровка арматуры
8.3.18 Анкеровку арматуры осуществляют одним из следующих способов или их сочетанием:
- в виде прямого окончания стержня (прямая анкеровка);
- с загибом на конце стержня в виде крюка, отгиба (лапки) или петли;
- с приваркой или установкой поперечных стержней;
- с применением специальных анкерных устройств на конце стержня.
8.3.19 Прямую анкеровку и анкеровку с лапками допускается применять только для арматуры периодического профиля. Для растянутых гладких стержней следует предусматривать крюки, петли, приваренные поперечные стержни или специальные анкерные устройства.
Лапки, крюки и петли не рекомендуется применять для анкеровки сжатой арматуры, за исключением гладкой арматуры, которая может подвергаться растяжению при некоторых возможных сочетаниях нагрузки.
8.3.20 При расчете длины анкеровки арматуры следует учитывать способ анкеровки, класс арматуры и ее профиль, диаметр арматуры, прочность бетона и его напряженное состояние в зоне анкеровки, конструктивное решение элемента в зоне анкеровки (наличие поперечной арматуры, положение стержней в сечении элемента и др.).
1,5 - для гладкой арматуры;
2 - для холоднодеформированной арматуры периодического профиля;
2,5 - для горячекатаной и термомеханически обработанной арматуры периодического профиля;
0,9 - при диаметре арматуры 36 и 40 мм.
8.3.22 Требуемую расчетную длину анкеровки арматуры с учетом конструктивного решения элемента в зоне анкеровки определяют по формуле
Допускается уменьшать длину анкеровки в зависимости от количества и диаметра поперечной арматуры, вида анкерующих устройств (приварка поперечной арматуры, загиб концов стержней периодического профиля) и величины поперечного обжатия бетона в зоне анкеровки (например, от опорной реакции), но не более чем на 30%.
8.3.25 При устройстве на концах стержней специальных анкеров в виде пластин, шайб гаек, уголков, высаженных головок и т.п. площадь контакта анкера с бетоном должна удовлетворять условию прочности бетона на смятие. Кроме того, при проектировании привариваемых анкерных деталей следует учитывать характеристики металла по свариваемости, а также способы и условия сварки.
Соединения арматуры
8.3.26 Для соединения арматуры принимают один из следующих типов стыков:
а) стыки внахлестку без сварки:
- с прямыми концами стержней периодического профиля;
- с прямыми концами стержней с приваркой или установкой на длине нахлестки поперечных стержней;
- с загибами на концах (крюки, лапки, петли); при этом для гладких стержней применяют только крюки и петли;
б) сварные и механические стыковые соединения:
- со сваркой арматуры;
- с применением специальных механических устройств (стыки с опрессованными муфтами, резьбовыми муфтами и др.).
8.3.27 Стыки арматуры внахлестку (без сварки) применяют при стыковании стержней с диаметром рабочей арматуры не более 40 мм.
На соединения арматуры внахлестку распространяются указания 8.3.19.
- относительное количество стыкуемой в одном расчетном сечении элемента рабочей растянутой арматуры периодического профиля должно быть не более 50%, гладкой арматуры (с крюками или петлями) - не более 25%;
- усилие, воспринимаемое всей поперечной арматурой, поставленной в пределах стыка, должно быть не менее половины усилия, воспринимаемого стыкуемой в одном расчетном сечении элемента растянутой рабочей арматурой;
При наличии дополнительных анкерующих устройств на концах стыкуемых стержней (приварка поперечной арматуры, загиб концов стыкуемых стержней периодического профиля и др.) длина перепуска стыкуемых стержней может быть уменьшена, но не более чем на 30%.
8.3.28 При соединении арматуры с использованием сварки выбор типов сварного соединения и способов сварки производят с учетом условий эксплуатации конструкции, свариваемости стали и требований по технологии изготовления в соответствии с действующими нормативными документами (ГОСТ 14098).
8.3.29 При использовании для стыков арматуры механических устройств в виде муфт (муфты на резьбе, спрессованные муфты и т.д.) несущая способность муфтового соединения должна быть такой же, что и стыкуемых стержней (соответственно при растяжении или сжатии). Концы стыкуемых стержней следует заводить на требуемую длину в муфту, определяемую расчетом или опытным путем.
При использовании муфт на резьбе должна быть обеспечена требуемая затяжка муфт для ликвидации люфта в резьбе.
Гнутые стержни
8.3.30 При применении гнутой арматуры (отгибы, загибы концов стержней) минимальный диаметр загиба отдельного стержня должен быть таким, чтобы избежать разрушения или раскалывания бетона внутри загиба арматурного стержня и его разрушения в месте загиба.
для гладких стержней:
для стержней периодического профиля:
ПРИЛОЖЕНИЕ А
(Справочное)
ОСНОВНЫЕ БУКВЕННЫЕ ОБОЗНАЧЕНИЯ
Усилия от внешних нагрузок и воздействий в поперечном сечении элемента
Характеристики материалов
|
|
-
| нормативное сопротивление бетона осевому сжатию; |
, - | расчетные сопротивления бетона осевому сжатию для предельных состояний соответственно первой и второй групп; |
-
| нормативное сопротивление бетона осевому растяжению; |
, - | расчетные сопротивления бетона осевому растяжению для предельных состояний соответственно первой и второй групп; |
- | расчетное сопротивление бетона смятию; |
- | расчетное сопротивление сцепления арматуры с бетоном; |
, - | расчетные сопротивления арматуры растяжению для предельных состояний соответственно первой и второй групп; |
- | расчетное сопротивление поперечной арматуры растяжению; |
- | расчетное сопротивление арматуры сжатию для предельных состояний первой группы; |
- | начальный модуль упругости бетона при сжатии и растяжении; |
- | модуль упругости арматуры; |
, - | предельные относительные деформации бетона соответственно при равномерном осевом сжатии и осевом растяжении; |
- | относительные деформации арматуры при напряжении, равном ; |
- | коэффициент ползучести бетона. |
Характеристики положения продольной арматуры в поперечном сечении элемента
|
|
- | обозначение продольной арматуры: |
| при наличии сжатой и растянутой от действия внешней нагрузки зон сечения - расположенной в растянутой зоне;
|
| при полностью сжатом от действия внешней нагрузки сечении - расположенной у менее сжатой грани сечения;
|
| при полностью растянутом от действия внешней нагрузки сечении:
|
| для внецентренно растянутых элементов - расположенной у более растянутой грани сечения;
|
| для центрально-растянутых элементов - всей в поперечном сечении элемента;
|
- | обозначение продольной арматуры: |
| при наличии сжатой и растянутой от действия внешней нагрузки зон сечения - paсположенной в сжатой зоне;
|
| при полностью сжатом от действия внешней нагрузки сечении - расположенной у более сжатой грани сечения;
|
| при полностью растянутом от действия внешней нагрузки сечении внецентренно растянутых элементов - расположенной у менее растянутой грани сечения. |
Геометрические характеристики
|
|
- | ширина прямоугольного сечения; ширина ребра таврового и двутаврового сечений; |
, -
| ширина полки таврового и двутаврового сечений соответственно в pастянутой и сжатой зонах; |
- | высота прямоугольного, таврового и двутаврового сечений; |
, -
| высота полки таврового и двутаврового сечений соответственно в растянутой и сжатой зонах; |
, -
| расстояние от равнодействующих усилий в арматуре соответственно и до ближайшей грани сечения; |
, -
| рабочая высота сечения, равная соответственно и ; |
- | высота сжатой зоны бетона; |
- | относительная высота сжатой зоны бетона, равная ; |
- | расстояние между хомутами, измеренное по длине элемента; |
- | эксцентриситет продольной силы относительно центра тяжести приведенного сечения, определяемый с учетом указаний 4.2.6; |
, - | расстояния от точки приложения продольной силы до равнодействующей усилий в арматуре соответственно и ; |
- | пролет элемента; |
- | расчетная длина элемента, подвергающегося действию сжимающей продольной силы; |
- | радиус инерции поперечного сечения элемента относительно центра тяжести сечения; |
, - | номинальный диаметр стержней соответственно продольной и поперечной арматуры; |
, - | площади сечения арматуры соответственно и ; |
- | площадь сечения хомутов, расположенных в одной нормальной к продольной оси элемента плоскости, пересекающей наклонное сечение; |
- | коэффициент армирования, определяемый как отношение площади сечения арматуры к площади поперечного сечения элемента без учета свесов сжатых и растянутых полок; |
- | площадь всего бетона в поперечном сечении; |
- | площадь сечения бетона сжатой зоны; |
- | площадь сечения бетона растянутой зоны; |
- | площадь приведенного сечения элемента; |
- | площадь смятия бетона; |
- | момент инерции сечения всего бетона относительно центра тяжести сечения элемента; |
- | момент инерции приведенного сечения элемента относительно его центра тяжести; |
- | момент сопротивления сечения элемента для крайнего растянутого волокна. |
________________________________________________________________________________________
УДК 624.012.3/.4(083.13)
Ключевые слова: основные расчетные требования к бетонным и железобетонным конструкциям, материалы для бетонных и железобетонных конструкций, конструктивные требования к бетонным и железобетонным конструкциям, расчет бетонных и железобетонных элементов по прочности
________________________________________________________________________________________